![]() |
Please wait for the animation to completely load.
The Schrödinger equation in one dimension,
[−(ħ2/2m)∂2/∂x2 + V(x)] ψ(x,t) = iħ(∂/∂t) ψ(x,t), (7.7)
governs the time evolution of quantum mechanical systems. We can also write this equation in terms of the Hamiltonian operator, H = [−(ħ2/2m)∂2/∂x2 + V(x)] , as
Hψ(x,t) = iħ(∂/∂t) ψ(x,t), (7.8)
The left-hand side of the Schrödinger equation involves just
the spatial part of ψ(x,t), and for
energy eigenstates we can determine how the spatial part behaves from the time-independent Schrödinger
equation. The right-hand side just involves the temporal part of ψ(x,t).
For energy eigenstates, Hψ(x) =
Eψ(x), and from the Schrödinger equation
the time development of such a state is
ψ(x) = e −iEt/ħ ψ(x) (7.9)
while for states in general we have
ψ(x,t) = e−iHt/ħ ψ(x,t) (7.10)
where e−iHt/ħ is called the time-evolution operator, UT(t).9
Looking at Eq. (7.9), it is clear that time-dependent states will be complex. How do we represent such complex functions? We will demonstrate two possible representations. Consider an arbitrary complex wave function that we choose to write as:
ψ(x,t) = ψRe(x,t) + iψIm(x,t) (7.11)
where we can show the real (blue) and/or imaginary (pink) parts of the wave function. Conversely, when you check the box and "set the state," we can write the wave function as
ψ(x,t) = A(x,t) eiθ(x,t), (7.12)
where we have chosen to write all of the complex behavior in
the exponential. When we do this, the angle, θ(x,t) = tan−1[ψIm(x,t)/ψRe(x,t)]
is called the phase of the wave function. The real part of the wave function in
this representation is just the probability amplitude A(x,t) = [ρ(x,t)]1/2. How do we show the wave function in this amplitude and phase description? We
will depict the amplitude of the wave function as the magnitude of the distance
from the bottom to the top of the wave function at a given point and time. We
represent the phase as the color of the wave function. The color strip above the
animation shows the map between phase angle and color. Since quantum-mechanical
time evolution involves a minus sign in the exponential, the phase evolves in
time clockwise in the complex plane.
Explore the time dependence of the energy eigenstate of a particle in an infinite square well by changing state and
representation. In the animation the time is given in terms of the time it takes the ground-state wave function to
return to its original phase.
Restart. For energy eigenstates, the amplitude does not change with time and time evolution
just changes the overall phase of the wave function. As a consequence, energy eigenstates
are also called stationary states.
If there is a time-dependence, we can write the expectation value of an operator as10
<A> = ∫ ψ*(x,t) A ψ(x,t) dx = ∫ ψ*(x) eiHt/ħ A e−iHt/ħ ψ(x) dx [integral from -∞ to +∞] (7.13)
and take a time derivative to find:
d<A>/dt = <∂A/∂t> + i/ħ <[H, A]>. (7.14)
In general, if a Hamiltonian has a potential V(x) that is just a function of x, we find that:
d<x>/dt = <p>/m, d<p>/dt = −<dV(x)/dx>, and d<H>/dt = 0. (7.15)
For the special case of a vanishing potential energy function, we
find that:
d<p>/dt = 0. (7.16)
All of these relationships are described by Ehrenfest's principle, a statement of the quantum-mechanical (on average) and classical correspondence of dynamical variables.
___________
9In general, for an operator
O, we know that O
−1O
= 1. For unitary
operators O†O
= 1. In other words, for unitary operators, their inverse is their adjoint. So for
example, the time-evolution operator, UT, is a unitary operator
because [eiHt/ħ
]−1
= [eiHt/ħ]†
and therefore UT−1
UT
= 1. This is the case as long as
H is a self-adjoint
or Hermitian operator, which it must be to yield real energies.
10We can think about a situation where the operators have the
time-dependence, but the states do not: ψH(x) = eiHt/ħ
ψS(x,t)
and AH(t) = eiHt/ħ AS
e−iHt/ħ. This is called the Heisenberg picture. This is equivalent to the situation where
the operators have no time dependence but the states do, which is called the
Schrödinger picture. The difference between pictures amounts to how you decide
to group UT and UT† in the expectation value: with the states or with the operator.