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This application report discusses the design of non-invasive optical plethysmography
also called as pulsoximeter using the MSP430FG437 Microcontroller (MCU). The
pulsoximeter consists of a peripheral probe combined with the MCU displaying the
oxygen saturation and pulse rate on a LCD glass. The same sensor is used for both
heart-rate detection and pulsoximetering in this application. The probe is placed on a
peripheral point of the body such as a finger tip, ear lobe or the nose. The probe
includes two light emitting diodes (LEDs), one in the visible red spectrum (660nm) and
the other in the infrared spectrum (940nm). The percentage of oxygen in the body is
worked by measuring the intensity from each frequency of light after it transmits
through the body and then calculating the ratio between these two intensities.

The Pulsoximeter is a medical instrument for monitoring the blood oxygenation of a patient. By measuring
the oxygen level and heart rate, the instrument can sound an alarm if these drop below a pre-determined
level. This type of monitoring is especially useful for new born infants and during surgery.

This application report demonstrates the implementation of a single chip portable pulsoximeter using the
ultra low power capability of the MSP430. Because of the high level of analog integration, the external
components can be kept to a minimum. Furthermore, by keeping ON time to a minimum and power
cycling the two light sources, power consumption is reduced.

In a pulsoximeter, the calculation of the level of oxygenation of blood (SaO2) is based on measuring the
intensity of light that has been attenuated by body tissue.

SaO2 is defined as the ratio of the level oxygenated Hemoglobin over the total Hemoglobin level
(oxygenated and depleted):

Body tissue absorbs different amounts of light depending on the oxygenation level of blood that is passing
through it. This characteristic is non-linear.

Two different wavelengths of light are used, each is turned on and measured alternately.By using two
different wavelengths, the mathematical complexity of measurement can be reduced.

Where λ1 and λ2 represents the two different wavelengths of light used.

There are a DC and an AC component in the measurements. It is assumed that the DC component is a
result of the absorption by the body tissue and veins. The AC component is the result of the absorption by
the arteries.

In practice, the relationship between SaO2 and R is not as linear as indicated by the above formula. For
this reason a look up table is used to provide a correct reading.
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1.3 Circuit Implementation
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Figure 1-1. System Block Diagram

Figure 1-1 depicts the system block diagram. The two LEDs are time multiplexed at 500 times per second.
The PIN diode is therefore alternately excited by each LED light source.

The PIN diode signal is amplified by the built in operational amplifiers OA0 and OA1. The ADC12 samples
the output of both amplifiers. The samples are correctly sequenced by the ADC12 hardware and the MCU
software separates the infra-red and the red components.

The SaO2 level and the heart rate are displayed on an LCD. The real time samples are also sent via an
RS232 to a PC. A separate PC software displays these samples a graphic trace.

Apart from the MCU and four transistors, only passive components are needed for this design.

An, off the shelf, Nellcor compatible probe 520-1011N is used. This probe has a finger clip integrated with
sensors and is convenient to use. The input to the probe is a D-type 9 pin connector.
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1.3.1 Generating the LED Pulses
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Figure 1-2. LED Drive Circuit

There are two LEDs, one for the visible red wavelength and another for the infrared wavelength.

In the Nellcor compatible probe, these two LEDs are connected back to back.

To turn them on, an H-Bridge arrangement is used. Figure 1-2 illustrate this circuit.

Port2.3 and Port2.2 drives the complementary circuit. A DAC0 controls the current through the LEDs and
thereby its light output level.

The whole circuit is time multiplexed.

In the MSP430FG437 the internal 12-bit DAC0 can be connected to either Pin5 or Pin10 of the MCU
through software control in the DAC’s control register. When a pin is not chosen to output the DAC0
signal, it is set to Hi-Z or low. The base of each transistor has a pull-down resistor to make sure the
transistor is turned off when it is not selected.
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1.3.2 Sampling and Conditioning the PIN Diode Signal
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Figure 1-3. Input Front End Circuit and LED Control

The photo-diode generates a current from the received light. This current signal is amplified by a
trans-impedance amplifier. OA0, one of the three built in op-amps, is used to amplify this signal. Since the
current signal is very small, it is important for this amplifier to have a low drift current.

The signal coming out of OA0 consists of a large DC component (around 1V) and a small AC component
(around 10mV pk-pk).

The large DC component is caused by the lesser oxygen bearing parts of the body tissue and scattered
light. This part of the signal is proportional to the intensity of the light emitted by the LED.

The small AC component is made up of the light modulation by the oxygen bearing parts such as the
arteries plus noise from ambient light at 50/60 Hz. It is this signal that needs to be extracted and amplified.

The LED level control tries to keep the output of OA0 within a preset range using the circuit illustrated in
Figure 1-2. The Normal Red and Infra Red LEDs are controlled separately to within this preset range.
Effectively, the output from both LEDs matches with each other within a small tolerance.

The extraction and amplification of the AC component of the OA0 output is performed by the second stage
OA1. The DC tracking filter extracts the DC component of the signal and is used as an offset input to
OA1. As OA1 would only amplify the difference it sees between the two terminals, only the AC portion of
the incoming signal is amplified. The DC portion is effectively filtered out.

The offset of OA1 is also amplified and added to the output signal. This needs to be filtered off later on.
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1.3.2.1 Time Multiplexing the Hardware

Figure 1-4. Time Multiplexing the Hardware

Timer A is used to control the multiplex sequence and automatically start the ADC conversion.

At the CCR0 interrupt, a new LED sequence is initiated with the following:

• The DAC12_0 control bit DAC12OPS is set or cleared depending on which LED is driven. Port2 is set
to turn on the corresponding LED.

• A new value for DAC12_0 is set to the corresponding light intensity level
• DAC12_1 is set to the DC tracking filter output for that particular LED.

Note that OA1 amplifies the difference between OA0 Out and DAC12_1.

As the intensity of the visible LED is adjusted, the DAC12_1 signal will become a straight line as the OA0
outputs for the two LEDs are equaled.

The ADC conversion is triggered automatically. It takes two samples, one of the OA0 output for DC
tracking and one of the OA1 output, to calculate the heart beat and oxygen level. These two samples are
taken one after the other using the internal sample timer by setting the MSC bit in the ADC control
register.

To conserve power, at the completion of the ADC conversion an interrupt is generated to tell the MCU to
switch off the LED by clearing DAC12_0.
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1.3.3 Signal Conditioning of the AC Components

OA1
ADC12

Output = Gain x AC
Component + Small

Offset

DC
Tracking

Filter Small
Offset

+

−

AC Component

RMS
Calculation

SaO2 = Fn [RMS(ir)/
RSM(vr)]

Use Infra−Red Samples Only

Heart Rate
Calculation

Input
+

−

K

K = 1/29

+

+

Output

Z−1

1.3.4 Calculating the Oxygen Level and Heart Beat Rate

Circuit Implementation

Figure 1-5. Signal conditioning of the AC Components

The output of OA1 is sampled by the ADC at 1000sps. Alternating between the infra-red LED and the
normal-red LED. Therefore each LED signal is sampled at 500 sps.

Samples of the OA1 output must be stripped of the residual DC. A high pass digital filter is impractical
here, as the required cutoff frequency is rather low. Instead a IIR filter is used to track the DC level. The
DC is then subtracted from the input signal to render a final true AC digital signal.

The sampled signal is digitally filtered to remove ambient noise at 50 Hz and above. A low pass FIR filter
with a corner frequency of 6 Hz and -50 dB attenuation at 50 Hz and above is implemented.

At this stage the signal resembles the pulsing of the heart beat through the arteries.

1.3.3.1 The DC Tracking filters

Figure 1-6. Tacking Filter Block Diagram

A DC tracking filter is illustrated in Figure 1-6.

This is an IIR filter. The working of this filter is best understood intuitively. The filter will add a small portion
of the difference between its input and its last output value to its last output value to form the a new output
value. It there is a step change in the input, the output changes itself to be the same as the input over a
period of time. The rate of change is controlled by the coefficient K. K is worked out by experiment.

So if the input contains an AC and DC component, The coefficient K is made sufficiently small to generate
a time constant relative to the frequency of the AC component so that over a length of time the AC will
cancel itself out in the accumulation process and the output would only track the DC component of the
input.

To ensure there is sufficient dynamic range, the calculation is done is double precision, 32 bits. Only the
most significant 16 bits are used.

Because both LEDs are pulsed, traditional analog signal processing has to be abandoned in favor of
digital signal processing.

The signal samples are low pass filtered to remove the 50/60 Hz noise.

For each wavelength of light, the DC value is removed from the signal leaving the AC part of the signal,
which reflects the arterial oxygenation level. The RMS value is calculated by averaging the square of the
signal over a number of heart beat cycles.
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Circuit Implementation

The DC measurement is continuously calculated by averaging the signals over a number of heart beat
cycles.

The driving strength of each LED is controlled so that the DC level seen at the PIN diode meets a set
target level with a small tolerance. By doing this for each LED, the final results is that the DC levels of
these two LED match one another to within a small tolerance.

Once the DC levels match, then the SaO2 is calculated by dividing the logs of the rms values.

The heart beat is measure by counting the number of samples in 3 beats, since the sampling rate is 500
sps. The heart beat per minute is calculated by:

Figure 1-7. Empirical and Theoretical R to SaO2

Figure 1-7 shows the difference between the empirical and theoretical R to SaO2 curve.

As the Oxygen Saturation seldom drops below 80%, a linear relationship with a slight offset can safely be
assumed.
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1.4 Results

Results

Figure 1-8. Heart Beat Signal Output

Figure 1-8 shows the captured Heart Beat signal from the board. This signal is output through the serial
port to the PC at 115 Kbps. An open source application program scope.exe that runs on the PC is also
available with this application notes.

The heart rate/minute is measured and displayed on the LCD.

The Oxygen Saturation percentage is also displayed.
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1.5 Parts List

1.6 References

1.7 Schematic

Parts List

Table 1-1. Parts List

QTY VALUE PARTS

2 Tact switch S1, S2

2 1n4148 D4, D5

1 DB9 X2

1 Jumper JP1

1 LCD LCD1

1 Red LED LED3

3 4pin header SL1, SL2, SL5

1 MAX3221 U2

2 MMBT2222 T1, T2

1 MSP430FG437 U1

1 LED 660nm, Kodenshi BL-23G D2

1 LED 940nm, Kodenshi EL-23G D3

1 Pin-diode, Kodenshi HPI-23G D1

10 0.1uF C1, C5, C6, C7, C8, C12, C13, C14, C15, C19

6 1kΩ R16, R17, R18, R19, R27, R28

3 1uF C3, C9, C20

1 3V battery G1

1 3pF C2

2 4.7nF C16, C17

1 5.1MΩ R3

2 0 Ω R21, R23

3 5kΩ R22, R24, R26

2 10kΩ R13, R14

3 10uF C4, C10, C11

1 15kΩ R9

2 20Ω R1, R2

1 32.768k X1

1 47pF C18

4 100Ω R4, R5, R6, R7

3 100kΩ R8, R15, R20

1 150kΩ R25

3 300kΩ R10, R11, R12

1 Buzzer SG2

1 Nellcor compatible probe 520-1011N

• MEDICAL Electronics, Dr Neil Townsend, Michaelmas Term 2001
• MSP430F4XX User’s Guide (SLAU056)
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