
4-116-Bit MSP430X CPU

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address
space.

Topic Page

4.1 CPU Introduction 4-2.

4.2 Interrupts 4-4.

4.3 CPU Registers 4-5.

4.4 Addressing Modes 4-15.

4.5 MSP430 and MSP430X Instructions 4-36.

4.6 Instruction Set Description 4-58.

Chapter 4

CPU Introduction

4-2 16-Bit MSP430X CPU

4.1 CPU Introduction

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than the MSP430 CPU, while maintaining the same or better code density than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

� RISC architecture.

� Orthogonal architecture.

� Full register access including program counter, status register and stack
pointer.

� Single-cycle register operations.

� Large register file reduces fetches to memory.

� 20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

� 16-bit data bus allows direct manipulation of word-wide arguments.

� Constant generator provides the six most often used immediate values
and reduces code size.

� Direct memory-to-memory transfers without intermediate register holding.

� Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4−1.

CPU Introduction

4-316-Bit MSP430X CPU

Figure 4−1. MSP430X CPU Block Diagram

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus − MABMDB − Memory Data Bus

16
20

16/20−bit ALU

srcdstZero, Z
Carry, C

Overflow,V
Negative,N

MCLK

016 15

R2/SR Status Register

Interrupts

4-4 16-Bit MSP430X CPU

4.2 Interrupts

The MSP430X uses the same interrupt structure as the MSP430:

� Vectored interrupts with no polling necessary

� Interrupt vectors are located downward from address 0FFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KB memory. This means all interrupt handlers must start in the lower
64-KB memory − even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4−2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETI instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4−2. Program Counter Storage on the Stack for Interrupts

Item n−1

PC.19:16

PC.15:0

SPold

SP SR.11:0

CPU Registers

4-516-Bit MSP430X CPU

4.3 CPU Registers

The CPU incorporates sixteen registers R0 to R15. Registers R0, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 The Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4−3 shows the program counter.

Figure 4−3. Program Counter PC

0Program Counter Bits 19 to 1

19 15 1 016

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV.W #value,PC will clear the upper four
bits of the PC because it is a .W instruction.

CPU Registers

4-6 16-Bit MSP430X CPU

The program counter is automatically stored on the stack with CALL, or CALLA
instructions, and during an interrupt service routine. Figure 4−4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4−4. Program Counter Storage on the Stack for CALLA

Item n

PC.19:16

PC.15:0

SPold

SP

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program
counter and adds 2 to the stack pointer.

CPU Registers

4-716-Bit MSP430X CPU

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4−5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4−6 shows the stack usage. Figure 4−7 shows the stack usage when
20-bit address-words are pushed.

Figure 4−5. Stack Pointer

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

Figure 4−6. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

Figure 4−7. PUSHX.A Format on the Stack

Item n−1

Item.19:16

Item.15:0

SPold

SP

CPU Registers

4-8 16-Bit MSP430X CPU

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4−8.

Figure 4−8. PUSH SP - POP SP Sequence

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

CPU Registers

4-916-Bit MSP430X CPU

4.3.3 Status Register (SR)

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4−9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4−9. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU
OFF

OSC
OFFSCG1V

8 79

Table 4−1 describes the status register bits.

Table 4−1.Description of Status Register Bits

Bit Description

Reserved Reserved

V Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(.B), ADDX(.B,.A),
ADDC(.B), ADDCX(.B.A),
ADDA

Set when:
positive + positive = negative
negative + negative = positive
otherwise reset

SUB(.B), SUBX(.B,.A),
SUBC(.B),SUBCX(.B,.A),
SUBA, CMP(.B),
CMPX(.B,.A), CMPA

Set when:
positive − negative = negative
negative − positive = positive
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative
and cleared when the result is positive.

CPU Registers

4-10 16-Bit MSP430X CPU

Bit Description

Z Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a
carry and cleared when no carry occurred.

CPU Registers

4-1116-Bit MSP430X CPU

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4−2.

Table 4−2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

� No special instructions required

� No additional code word for the six constants

� No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator − Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3),dst

CPU Registers

4-12 16-Bit MSP430X CPU

4.3.5 The General Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to a CPU register clears bits 19:8. Any word-write to a register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4−10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4−10. Register-Byte/Byte-Register Operation

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Un-
used

Unused
Un-
used

0

19 16 15 0

19 16 15 0

8 7

8 7

CPU Registers

4-1316-Bit MSP430X CPU

Figure 4−11 and Figure 4−12 show 16-bit word handling (.W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4−11. Register-Word Operation

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

Figure 4−12. Word-Register Operation

High Byte Low Byte

Word-Register Operation

Register

Memory

Operation

0 Register

Un-
used

19 16 15 08 7

CPU Registers

4-14 16-Bit MSP430X CPU

Figure 4−13 and Figure 4−14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination
register.

Figure 4−13. Register − Address-Word Operation

High Byte Low Byte

Register − Address-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

Figure 4−14. Address-Word − Register Operation

High Byte Low Byte

Address-Word − Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

CPU Registers

4-1516-Bit MSP430X CPU

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 4−3.Source/Destination Addressing

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is
used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is
used.

10/− Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/− Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

11/− Immediate mode #N N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

CPU Registers

4-16 16-Bit MSP430X CPU

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU
register.

Length: One, two, or three words

Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation:Word operation reads the 16 LSBs of the source register Rsrc
and writes the result to the 16 LSBs of the destination register
Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is not modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

xxxxh

Address
Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address
Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

CPU Registers

4-1716-Bit MSP430X CPU

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

xxxxh

Address
Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address
Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

CPU Registers

4-18 16-Bit MSP430X CPU

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed
index to a CPU register. The Indexed mode has three addressing possibilities:

� Indexed mode in lower 64-KB memory

� MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

� MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculated memory address bits 19:16 are cleared after the addition
of the CPU register Rn and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4−15.

Figure 4−15. Indexed Mode in Lower 64 KB

16-bit
signed index

CPU Register
Rn

16-bit signed add

0 Memory address

ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ

FFFFF

00000

Lo
w

er
 6

4K
B

0FFFF
10000

Rn.19:0

Lower 64 KB.
Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Length: Two or three words

Operation: The signed 16-bit index is located in the next word after the
instruction and is added to the CPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to 0FFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

CPU Registers

4-1916-Bit MSP430X CPU

Example: ADD.B 1000h(R5),0F000h(R6);

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte 0F000h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h
+ F000h = 00778h after truncation to a 16-bit address.

xxxxh

Address
Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h
+F000h
00778h

Register
Before:

Address
Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h

77h

src
dst
Sum

0479Ch
+1000h
0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

CPU Registers

4-20 16-Bit MSP430X CPU

MSP430 Instruction with Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn ±32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space. See Figure 4−16
and Figure 4−17.

Figure 4−16. Indexed Mode in Upper Memory

16-bit signed index
(sign extended to
20 bits)

CPU Register
Rn

20-bit signed add

Memory address

FFFFF

00000

Lo
w

er
 6

4
K

B
0FFFF
10000

Upper Memory
Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ±32 KB

S

Rn.19:0

Figure 4−17. Overflow and Underflow for the Indexed Mode

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

FFFFF

0000C

Lo
w

er
 6

4
K

B

0,FFFF
10000

Rn.19:0

Rn.19:0

Rn.19:0
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

±3
2K

B

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

±3
2K

B

Rn.19:0

CPU Registers

4-2116-Bit MSP430X CPU

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the CPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADD.W 8346h(R5),2100h(R6);

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4−18. Example for the Indexed Mode

xxxxh

Address
Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h
+02100h

17778h

Register
Before:

Address
Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h
+02345h

07777h

src
dst
Sum

23456h
+F8346h
1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

CPU Registers

4-22 16-Bit MSP430X CPU

MSP430X Instruction with Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn ± 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

CPU Registers

4-2316-Bit MSP430X CPU

The extension word contains the MSBs of the source index and of the
destination index and the A/L-bit for 20-bit data. The instruction word uses byte
mode due to the 20-bit data length with bits A/L:B/W = 01.

2100h

Address
Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h
+32100h

77778h

Register
Before:

Address
Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h
+12345h

77777h

src
dst
Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h
+12346h
3579Ch

CPU Registers

4-24 16-Bit MSP430X CPU

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

� Symbolic mode in lower 64-KB memory

� MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

� MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4−15.

Figure 4−19. Symbolic Mode Running in Lower 64 KB

16-bit signed
PC index

Program
counter PC

16-bit signed add

0 Memory address

ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ

FFFFF

00000

Lo
w

er
 6

4
K

B

0FFFF
10000

PC.19:0

Lower 64 KB.
PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to 0FFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD.B EDE,TONI ;

CPU Registers

4-2516-Bit MSP430X CPU

The previous instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch −
01036h = 04766h. Address 01036h is the location of the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h − 1038h = FF740h. Address 01038h is the location
of the index for this example.

xxxxh

Address
Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h
+0F740h

00778h

Before:
Address
Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h

77h

src
dst
Sum

01036h
+04766h
0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

CPU Registers

4-26 16-Bit MSP430X CPU

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC ±32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or
underflow into the lower 64-KB memory space as shown in Figure 4−20 and
Figure 4−21.

Figure 4−20. Symbolic Mode Running in Upper Memory

16-bit signed PC
index (sign
extended to
20 bits)

Program
counter PC

20-bit signed add

Memory address

FFFFF

00000

Lo
w

er
 6

4
K

B
0FFFF
10000

PC.19:0

Upper Memory
PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32 KB

S

Figure 4−21. Overflow and Underflow for the Symbolic Mode

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

FFFFF

0000C

Lo
w

er
 6

4
K

B

0FFFF
10000

PC.19:0

PC.19:0

PC.19:0
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

±3
2K

B

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

±3
2K

B

PC.19:0

CPU Registers

4-2716-Bit MSP430X CPU

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch − 2F036h = 04766h.
Address 2F036h is the location of the index for this example.

Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.

xxxxh

Address
Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h
+04766h
3379Ch

Before:
Address
Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h
+2345h

7777h

src
dst
Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

CPU Registers

4-28 16-Bit MSP430X CPU

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC ± 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.B EDE,TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h
+56740h

77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h
+45h

77h

src
dst
Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h
+14766h
3579Ch

CPU Registers

4-2916-Bit MSP430X CPU

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

� Absolute mode in lower 64-KB memory

� MSP430X instruction with Absolute mode

CPU Registers

4-30 16-Bit MSP430X CPU

Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates
the index from 0 and inserts it

Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h
+2345h

7777h

src
dst
Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

CPU Registers

4-3116-Bit MSP430X CPU

MSP430X Instruction with Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates
the index from 0 and inserts it

Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

7778h

Address
Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address
Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h
+12345h

77777h

src
dst
Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

CPU Registers

4-32 16-Bit MSP430X CPU

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words

Operation: The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Comment: Valid only for the source operand. The substitute for the
destination operand is 0(Rdst).

Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Word pointed to by R6 + 2100h which results in address
45678h + 2100h = 7778h.

xxxxh

Address
Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h
+02100h

47778h

Register
Before:

Address
Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h
+2345h

7777h

src
dst
Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

CPU Registers

4-3316-Bit MSP430X CPU

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc
as the source operand. Rsrc is then automatically incremented by 1 for byte
instructions, by 2 for word instructions, and by 4 for address-word instructions
immediately after accessing the source operand. If the same register is used
for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit
addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid only for the source operand.

Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to by R6 + 0h which results in address 0778h for
this example.

xxxxh

Address
Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h
+0000h
00778h

Register
Before:

Address
Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h

77h

src
dst
Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

CPU Registers

4-34 16-Bit MSP430X CPU

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

� 8- or 16-bit constants with MSP430 instructions

� 20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the
instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

xxxxh

Address
Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address
Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h
+2345h
579Bh

src
dst
Sum

CPU Registers

4-3516-Bit MSP430X CPU

MSP430X Instructions with Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.

Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

7778h

Address
Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address
Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h
+12345h
3579Bh

src
dst
Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

MSP430 and MSP430X Instructions

4-36 16-Bit MSP430X CPU

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MB memory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

� To use only the MSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

� Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

� Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC ±32 KB.

� To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

� Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

MSP430 and MSP430X Instructions

4-3716-Bit MSP430X CPU

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA
instructions have been added to the MSP430X CPU to handle subroutines in
the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4−22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,
Absolute and Immediate modes. Table 4−4 lists the twelve MSP430 double
operand instructions.

Figure 4−22. MSP430 Double Operand Instruction Format

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

Table 4−4.MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bitsg,
D-Reg V N Z C

MOV(.B) src,dst src → dst − − − −

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst − src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * Z

BIC(.B) src,dst .not.src .and. dst → dst − − − −

BIS(.B) src,dst src .or. dst → dst − − − −

XOR(.B) src,dst src .xor. dst → dst * * * Z

AND(.B) src,dst src .and. dst → dst 0 * * Z

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430 and MSP430X Instructions

4-38 16-Bit MSP430X CPU

Single Operand (Format II) Instructions

Figure 4−23 shows the format for MSP430 single operand instructions, except
RETI. The destination word is appended for the Indexed, Symbolic, Absolute
and Immediate modes .Table 4−5 lists the seven single operand instructions.

Figure 4−23. MSP430 Single Operand Instructions

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

Table 4−5.MSP430 Single Operand Instructions

Mnemonic S-Reg,
D Reg

Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP − 2 → SP, src → @SP − − − −

SWPB dst bit 15…bit 8 ⇔ bit 7…bit 0 − − − −

CALL dst Call subroutine in lower 64 KB − − − −

RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Register mode:
bit 7 → bit 8 …bit 19
Other modes:
 bit 7 → bit 8 …bit 15

0 * * Z

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430 and MSP430X Instructions

4-3916-Bit MSP430X CPU

Jumps

Figure 4−24 shows the format for MSP430 and MSP430X jump instructions.
The signed 10-bit word offset of the jump instruction is multiplied by two,
sign-extended to a 20-bit address, and added to the 20-bit program counter.
This allows jumps in a range of -511 to +512 words relative to the program
counter in the full 20-bit address space Jumps do not affect the status bits.
Table 4−6 lists and describes the eight jump instructions.

Figure 4−24. Format of the Conditional Jump Instructions

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

Table 4−6.Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

MSP430 and MSP430X Instructions

4-40 16-Bit MSP430X CPU

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions
are instructions that make code easier to write and read, but do not have
op-codes themselves. Instead, they are replaced automatically by the
assembler with a core instruction. There is no code or performance penalty for
using emulated instructions. The emulated instructions are listed in Table 4−7.

Table 4−7.Emulated Instructions

Instruction Explanation Emulation V N Z C

ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * * * *

BR dst Branch indirectly dst MOV dst,PC - - - -

CLR(.B) dst Clear dst MOV(.B) #0,dst - - - -

CLRC Clear Carry bit BIC #1,SR - - - 0

CLRN Clear Negative bit BIC #4,SR - 0 - -

CLRZ Clear Zero bit BIC #2,SR - - 0 -

DADC(.B) dst Add Carry to dst decimally DADD(.B) #0,dst * * * *

DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * * * *

DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * * * *

DINT Disable interrupt BIC #8,SR - - - -

EINT Enable interrupt BIS #8,SR - - - -

INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * * * *

INCD(.B) dst Increment dst by 2 ADD(.B) #2,dst * * * *

INV(.B) dst Invert dst XOR(.B) #-1,dst * * * *

NOP No operation MOV R3,R3 - - - -

POP dst Pop operand from stack MOV @SP+,dst - - - -

RET Return from subroutine MOV @SP+,PC - - - -

RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * * * *

RLC(.B) dst Shift left dst
logically through Carry

ADDC(.B) dst,dst * * * *

SBC(.B) dst Subtract Carry from dst SUBC(.B) #0,dst * * * *

SETC Set Carry bit BIS #1,SR - - - 1

SETN Set Negative bit BIS #4,SR - 1 - -

SETZ Set Zero bit BIS #2,SR - - 1 -

TST(.B) dst Test dst
(compare with 0)

CMP(.B) #0,dst 0 * * 1

MSP430 and MSP430X Instructions

4-4116-Bit MSP430X CPU

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4−8 lists the length and the CPU cycles for reset, interrupts and
subroutines.

Table 4−8. Interrupt, Return and Reset Cycles and Length

Action
Execution Time
MCLK Cycles

Length of
Instruction (Words)

Return from interrupt RETI 3† 1

Return from subroutine RET 3 1

Interrupt request service (cycles
needed before 1st instruction)

5‡ -

WDT reset 4 -

Reset (RST/NMI) 4 -

† The cycle count in MSP430 CPU is 5.
‡ The cycle count in MSP430 CPU is 6.

MSP430 and MSP430X Instructions

4-42 16-Bit MSP430X CPU

Format-II (Single Operand) Instruction Cycles and Lengths

Table 4−9 lists the length and the CPU cycles for all addressing modes of the
MSP430 single operand instructions.

Table 4−9.MSP430 Format-II Instruction Cycles and Length

No. of Cycles Length of
Instruction Example

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 3† 1 SWPB R5

@Rn 3 3† 4 1 RRC @R9

@Rn+ 3 3† 4‡ 1 SWPB @R10+

#N n.a. 3† 4‡ 2 CALL #LABEL

X(Rn) 4 4‡ 4‡ 2 CALL 2(R7)

EDE 4 4‡ 4‡ 2 PUSH EDE

&EDE 4 4‡ 4‡ 2 SXT &EDE

† The cycle count in MSP430 CPU is 4.
‡ The cycle count in MSP430 CPU is 5. Also, the cycle count is 5 for X(Rn) addressing mode, when

Rn = SP.

Jump Instructions. Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

MSP430 and MSP430X Instructions

4-4316-Bit MSP430X CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Table 4−10 lists the length and CPU cycles for all addressing modes of the
MSP430 format-I instructions.

Table 4−10.MSP430 Format-I Instructions Cycles and Length

Addressing Mode No. of Length of

Src Dst Cycles
g

Instruction Example
Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4† 2 ADD R5,4(R6)

EDE 4† 2 XOR R8,EDE

&EDE 4† 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5

PC 3 1 BR @R8

x(Rm) 5† 2 XOR @R5,8(R6)

EDE 5† 2 MOV @R5,EDE

&EDE 5† 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6

PC 3 1 BR @R9+

x(Rm) 5† 2 XOR @R5,8(R6)

EDE 5† 2 MOV @R9+,EDE

&EDE 5† 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5† 3 MOV #0300h,0(SP)

EDE 5† 3 ADD #33,EDE

&EDE 5† 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7()

PC 3 2 BR 2(R6)

TONI 6† 3 MOV 4(R7),TONI

x(Rm) 6† 3 ADD 4(R4),6(R9)

&TONI 6† 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6† 3 CMP EDE,TONI

x(Rm) 6† 3 MOV EDE,0(SP)

&TONI 6† 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BR &EDE

TONI 6† 3 MOV &EDE,TONI

x(Rm) 6† 3 MOV &EDE,0(SP)

&TONI 6† 3 MOV &EDE,&TONI

† MOV, BIT, and CMP instructions execute in 1 fewer cycle

MSP430X Extended Instructions

4-44 16-Bit MSP430X CPU

4.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Most MSP430X instructions require an additional word
of op-code called the extension word. Some extended instructions do not
require an additional word and are noted in the instruction description. All
addresses, indexes and immediate numbers have 20-bit values, when
preceded by the extension word.

There are two types of extension word:

� Register/register mode for Format-I instructions and register mode for
Format-II instructions.

� Extension word for all other address mode combinations.

MSP430X Extended Instructions

4-4516-Bit MSP430X CPU

Register Mode Extension Word

The register mode extension word is shown in Figure 4−25 and described in
Table 4−11. An example is shown in Figure 4−27.

Figure 4−25. The Extension Word for Register Modes

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n−1)/Rn

Table 4−11. Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension
words.

10:9 Reserved

ZC Zero carry bit.

0: The executed instruction uses the status of the carry bit C.

1: The executed instruction uses the carry bit as 0. The carry bit will
be defined by the result of the final operation after instruction execu-
tion.

Repetition bit.

0: The number of instruction repetitions is set by extension-word bits
3:0.

1: The number of instructions repetitions is defined by the value of the
four LSBs of Rn. See description for bits 3:0.

A/L Data length extension bit. Together with the B/W-bits of the following
MSP430 instruction, the AL bit defines the used data length of the
instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address-word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

3:0 Repetition Count.

= 0: These four bits set the repetition count n. These bits contain
n - 1.

= 1: These four bits define the CPU register whose bits 3:0 set the
number of repetitions. Rn.3:0 contain n - 1.

MSP430X Extended Instructions

4-46 16-Bit MSP430X CPU

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4−26 and
described in Table 4−12. An example is shown in Figure 4−28.

Figure 4−26. The Extension Word for Non-Register Modes

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

Table 4−12.Description of the Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are exten-
sion words.

Source Bits
19:16

The four MSBs of the 20-bit source. Depending on the source
addressing mode, these four MSBs may belong to an immedi-
ate operand, an index or to an absolute address.

A/L Data length extension bit. Together with the B/W-bits of the fol-
lowing MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20 bit address-word

1 0 16 bit word

1 1 8 bit byte

5:4 Reserved

Destination Bits
19:16

The four MSBs of the 20-bit destination. Depending on the des-
tination addressing mode, these four MSBs may belong to an
index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX

The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 n.a.
1 0 SWPB.W, SXTX.W
1 1 n.a.

MSP430X Extended Instructions

4-4716-Bit MSP430X CPU

Figure 4−27. Example for an Extended Register/Register Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n−1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01: Address word

Destination
register mode

Source
register mode

Destination R8

Figure 4−28. Example for an Extended Immediate/Indexed Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+
X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

MSP430X Extended Instructions

4-48 16-Bit MSP430X CPU

Extended Double Operand (Format-I) Instructions

All twelve double-operand instructions have extended versions as listed in
Table 4−13.

Table 4−13.Extended Double Operand Instructions

Status Bits

Mnemonic Operands Operation V N Z C

MOVX(.B,.A) src,dst src → dst − − − −

ADDX(.B,.A) src,dst src + dst → dst * * * *

ADDCX(.B,.A) src,dst src + dst + C → dst * * * *

SUBX(.B,.A) src,dst dst + .not.src + 1 → dst * * * *

SUBCX(.B,.A) src,dst dst + .not.src + C → dst * * * *

CMPX(.B,.A) src,dst dst − src * * * *

DADDX(.B,.A) src,dst src + dst + C → dst (decimal) * * * *

BITX(.B,.A) src,dst src .and. dst 0 * * Z

BICX(.B,.A) src,dst .not.src .and. dst → dst − − − −

BISX(.B,.A) src,dst src .or. dst → dst − − − −

XORX(.B,.A) src,dst src .xor. dst → dst * * * Z

ANDX(.B,.A) src,dst src .and. dst → dst 0 * * Z

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430X Extended Instructions

4-4916-Bit MSP430X CPU

The four possible addressing combinations for the extension word for format-I
instructions are shown in Figure 4−29.

Figure 4−29. Extended Format-I Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n−1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

If the 20-bit address of a source or destination operand is located in memory,
not in a CPU register, then two words are used for this operand as shown in
Figure 4−30.

Figure 4−30. 20-Bit Addresses in Memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

MSP430X Extended Instructions

4-50 16-Bit MSP430X CPU

Extended Single Operand (Format-II) Instructions

Extended MSP430X Format-II instructions are listed in Table 4−14.

Table 4−14.Extended Single-Operand Instructions

Operation Status Bits

Mnemonic Operands n V N Z C

CALLA dst Call indirect to subroutine (20-bit address) − − − −

POPM.A #n,Rdst Pop n 20-bit registers from stack 1 − 16 − − − −

POPM.W #n,Rdst Pop n 16-bit registers from stack 1 − 16 − − − −

PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1 − 16 − − − −

PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1 − 16

PUSHX(.B,.A) src Push 8/16/20-bit source to stack − − − −

RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry
(16-/20-bit register)

1 − 4 0 * * *

RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned
(16-/20-bit register)

1 − 4 0 * * *

RRAM(.A) #n,Rdst Rotate right Rdst n bits arithmetically
(16-/20-bit register)

1 − 4 * * * *

RLAM(.A) #n,Rdst Rotate left Rdst n bits arithmetically
(16-/20-bit register)

1 − 4 * * * *

RRCX(.B,.A) dst Rotate right dst through carry
(8-/16-/20-bit data)

1 0 * * *

RRUX(.B,.A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * *

RRAX(.B,.A) dst Rotate right dst arithmetically 1 * * * *

SWPBX(.A) dst Exchange low byte with high byte 1 − − − −

SXTX(.A) Rdst Bit7 → bit8 … bit19 1 0 * * *

SXTX(.A) dst Bit7 → bit8 … MSB 1 0 * * *

MSP430X Extended Instructions

4-5116-Bit MSP430X CPU

The three possible addressing mode combinations for format-II instructions
are shown in Figure 4−31.

Figure 4−31. Extended Format-II Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n−1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

Extended Format II Instruction Format Exceptions

Exceptions for the Format II instruction formats are shown below.

Figure 4−32. PUSHM/POPM Instruction Format

15 8 7 4 3 0

Op-code n−1 Rdst − n+1

Figure 4−33. RRCM, RRAM, RRUM and RLAM Instruction Format

15 12 11 10 9 4 3 0

C n−1 Op-code Rdst

MSP430X Extended Instructions

4-52 16-Bit MSP430X CPU

Figure 4−34. BRA Instruction Format

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

Figure 4−35. CALLA Instruction Format

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

MSP430X Extended Instructions

4-5316-Bit MSP430X CPU

Extended Emulated Instructions

The extended instructions together with the constant generator form the
extended Emulated instructions. Table 4−15 lists the Emulated instructions.

Table 4−15.Extended Emulated Instructions

Instruction Explanation Emulation

ADCX(.B,.A) dst Add carry to dst ADDCX(.B,.A) #0,dst

BRA dst Branch indirect dst MOVA dst,PC

RETA Return from subroutine MOVA @SP+,PC

CLRA Rdst Clear Rdst MOV #0,Rdst

CLRX(.B,.A) dst Clear dst MOVX(.B,.A) #0,dst

DADCX(.B,.A) dst Add carry to dst decimally DADDX(.B,.A) #0,dst

DECX(.B,.A) dst Decrement dst by 1 SUBX(.B,.A) #1,dst

DECDA Rdst Decrement dst by 2 SUBA #2,Rdst

DECDX(.B,.A) dst Decrement dst by 2 SUBX(.B,.A) #2,dst

INCX(.B,.A) dst Increment dst by 1 ADDX(.B,.A) #1,dst

INCDA Rdst Increment Rdst by 2 ADDA #2,Rdst

INCDX(.B,.A) dst Increment dst by 2 ADDX(.B,.A) #2,dst

INVX(.B,.A) dst Invert dst XORX(.B,.A) #-1,dst

RLAX(.B,.A) dst Shift left dst arithmetically ADDX(.B,.A) dst,dst

RLCX(.B,.A) dst Shift left dst logically through carry ADDCX(.B,.A) dst,dst

SBCX(.B,.A) dst Subtract carry from dst SUBCX(.B,.A) #0,dst

TSTA Rdst Test Rdst (compare with 0) CMPA #0,Rdst

TSTX(.B,.A) dst Test dst (compare with 0) CMPX(.B,.A) #0,dst

POPX dst Pop to dst MOVX(.B, .A) @SP+,dst

MSP430X Extended Instructions

4-54 16-Bit MSP430X CPU

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the register mode and the Immediate mode, except for the MOVA instruction
as listed in Table 4−16. Restricting the addressing modes removes the need
for the additional extension-word op-code improving code density and
execution time. Address instructions should be used any time an MSP430X
instruction is needed with the corresponding restricted addressing mode.

Table 4−16.Address Instructions, Operate on 20-bit Registers Data

Status Bits

Mnemonic Operands Operation V N Z C

ADDA Rsrc,Rdst

#imm20,Rdst

Add source to destination
register

* * * *

MOVA Rsrc,Rdst

#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

Move source to destination - - - -

CMPA Rsrc,Rdst

#imm20,Rdst

Compare source to destina-
tion register

* * * *

SUBA Rsrc,Rdst

#imm20,Rdst

Subtract source from des-
tination register

* * * *

MSP430X Extended Instructions

4-5516-Bit MSP430X CPU

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction
depends on the instruction format and the addressing modes used — not the
instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-II (Single-Operand) Instruction Cycles and Lengths

Table 4−17 lists the length and the CPU cycles for all addressing modes of the
MSP430X extended single-operand instructions.

Table 4−17.MSP430X Format II Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)

Instruction Rn @Rn @Rn+ #N X(Rn) EDE &EDE

RRAM n/1 − − − − − −

RRCM n/1 − − − − − −

RRUM n/1 − − − − − −

RLAM n/1 − − − − − −

PUSHM 2+n/1 − − − − − −

PUSHM.A 2+2n/1 − − − − − −

POPM 2+n/1 − − − − − −

POPM.A 2+2n/1 − − − − − −

CALLA 4/1 5/1 5/1 4/2 6†/2 6/2 6/2

RRAX(.B) 1+n/2 4/2 4/2 − 5/3 5/3 5/3

RRAX.A 1+n/2 6/2 6/2 − 7/3 7/3 7/3

RRCX(.B) 1+n/2 4/2 4/2 − 5/3 5/3 5/3

RRCX.A 1+n/2 6/2 6/2 − 7/3 7/3 7/3

PUSHX(.B) 4/2 4/2 4/2 4/3 5†/3 5/3 5/3

PUSHX.A 5/2 6/2 6/2 6/3 7†/3 7/3 7/3

POPX(.B) 3/2 − − − 5/3 5/3 5/3

POPX.A 4/2 − − − 7/3 7/3 7/3
† Add one cycle when Rn = SP.

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

Table 4−18 lists the length and CPU cycles for all addressing modes of the
MSP430X extended format-I instructions.

MSP430X Extended Instructions

4-56 16-Bit MSP430X CPU

Table 4−18.MSP430X Format-I Instruction Cycles and Length

Addressing Mode
No. of
Cycles

Length of
Instruction

Source Destination .B/.W .A .B/.W/.A Examples

Rn Rm† 2 2 2 BITX.B R5,R8

PC 3 3 2 ADDX R9,PC

X(Rm) 5‡ 7§ 3 ANDX.A R5,4(R6)

EDE 5‡ 7§ 3 XORX R8,EDE

&EDE 5‡ 7§ 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 3 4 2 ADDX @R9,PC

X(Rm) 6‡ 9§ 3 ANDX.A @R5,4(R6)

EDE 6‡ 9§ 3 XORX @R8,EDE

&EDE 6‡ 9§ 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 4 5 2 ADDX.A @R9+,PC

X(Rm) 6‡ 9§ 3 ANDX @R5+,4(R6)

EDE 6‡ 9§ 3 XORX.B @R8+,EDE

&EDE 6‡ 9§ 3 BITX @R5+,&EDE

#N Rm 3 3 3 BITX #20,R8

PC¶ 4 4 3 ADDX.A #FE000h,PC

X(Rm) 6‡ 8§ 4 ANDX #1234,4(R6)

EDE 6‡ 8§ 4 XORX #A5A5h,EDE

&EDE 6‡ 8§ 4 BITX.B #12,&EDE

X(Rn) Rm 4 5 3 BITX 2(R5),R8

PC¶ 5 6 3 SUBX.A 2(R6),PC

X(Rm) 7‡ 10§ 4 ANDX 4(R7),4(R6)

EDE 7‡ 10§ 4 XORX.B 2(R6),EDE

&EDE 7‡ 10§ 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC¶ 5 6 3 ADDX.A EDE,PC

X(Rm) 7‡ 10§ 4 ANDX EDE,4(R6)

EDE 7‡ 10§ 4 ANDX EDE,TONI

&TONI 7‡ 10§ 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC¶ 5 6 3 ADDX.A &EDE,PC

X(Rm) 7‡ 10§ 4 ANDX.B &EDE,4(R6)

TONI 7‡ 10§ 4 XORX &EDE,TONI

&TONI 7‡ 10§ 4 BITX &EDE,&TONI
† Repeat instructions require n+1 cycles where n is the number of times the instruction is

executed.
‡ Reduce the cycle count by one for MOV, BIT, and CMP instructions.
§ Reduce the cycle count by two for MOV, BIT, and CMP instructions.
¶ Reduce the cycle count by one for MOV, ADD, and SUB instructions.

MSP430X Extended Instructions

4-5716-Bit MSP430X CPU

MSP430X Address Instruction Cycles and Lengths

Table 4−19 lists the length and the CPU cycles for all addressing modes of the
MSP430X address instructions.

Table 4−19.Address Instruction Cycles and Length

Addressing Mode

Execution
Time MCLK

Cycles

Length of
Instruction

(Words)

Source Destination
MOVA
BRA

CMPA
ADDA
SUBA MOVA

CMPA
ADDA
SUBA Example

Rn Rn 1 1 1 1 CMPA R5,R8

PC 2 2 1 1 SUBA R9,PC

x(Rm) 4 - 2 - MOVA R5,4(R6)

EDE 4 - 2 - MOVA R8,EDE

&EDE 4 - 2 - MOVA R5,&EDE

@Rn Rm 3 - 1 - MOVA @R5,R8

PC 3 - 1 - MOVA @R9,PC

@Rn+ Rm 3 - 1 - MOVA @R5+,R8

PC 3 - 1 - MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 - 2 - MOVA 2(R5),R8

PC 4 - 2 - MOVA 2(R6),PC

EDE Rm 4 - 2 - MOVA EDE,R8

PC 4 - 2 - MOVA EDE,PC

&EDE Rm 4 - 2 - MOVA &EDE,R8

PC 4 - 2 - MOVA &EDE,PC

Instruction Set Description

4-58 16-Bit MSP430X CPU

4.6 Instruction Set Description

The instruction map of the MSP430X shows all available instructions:

0xxx
10xx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

CALLA
PUSHM.A, POPM.A, PUSHM.W, POPM.W

Extension Word For Format I and Format II Instructions

Instruction Set Description

4-5916-Bit MSP430X CPU

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown below.

Instruction
Group

src or
data.19:16

Instruction
Identifier dst

Instruction 15 12 11 8 7 4 3 0

MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0

0 0 0 0 src 0 0 1 1 dst MOVA x(Rsrc),Rdst

x.15:0 ±15-bit index x

0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0

0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,X(Rdst)

x.15:0 ±15-bit index x

0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0

CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0

ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0

SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0

MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction
Group

Bit
loc.

Inst.
ID

Instruction
Identifier dst

Instruction 15 12 11 10 9 8 7 4 3 0

RRCM.A 0 0 0 0 n−1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n−1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n−1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n−1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n−1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n−1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n−1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n−1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

Instruction Set Description

4-60 16-Bit MSP430X CPU

Instruction Identifier dst

Instruction 15 12 11 8 7 6 5 4 3 0

RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0

0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0

0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0

Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x

Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x

PUSHM.A 0 0 0 1 0 1 0 0 n−1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n−1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n−1 dst−n+1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n−1 dst−n+1 POPM.W #n,Rdst

 MSP430 Instructions

4-6116-Bit MSP430X CPU

4.6.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

 MSP430 Instructions

4-62 16-Bit MSP430X CPU

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C −> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

 MSP430 Instructions

4-6316-Bit MSP430X CPU

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst → dst

Description The source operand is added to the destination operand. The previous content
of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump
to label TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented by
1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh

JNC TONI ; Jump if no carry

... ; Carry occurred

 MSP430 Instructions

4-64 16-Bit MSP430X CPU

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C → dst

Description The source operand and the carry bit C are added to the destination operand.
The previous content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant value 15 and the carry of the previous instruction are added to the
16-bit counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1

JNC TONI ; Jump if no carry

... ; Carry occurred

 MSP430 Instructions

4-6516-Bit MSP430X CPU

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .and. dst → dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM
located in the lower 64 K. If the result is zero, a branch is taken to label TONI.
R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5

AND R5,&TOM ; TOM .and. R5 -> TOM

JZ TONI ; Jump if result 0

... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM

JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

 MSP430 Instructions

4-66 16-Bit MSP430X CPU

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation (.not. src) .and. dst → dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

 MSP430 Instructions

4-6716-Bit MSP430X CPU

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .or. dst → dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.
R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

 MSP430 Instructions

4-68 16-Bit MSP430X CPU

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte

Syntax BIT src,dst or BIT.W src,dst
BIT.B src,dst

Operation src .and. dst

Description The source operand and the destination operand are logically ANDed. The
result affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if one − or both − of bits 15 and 14 of R5 (16-bit data) is set. Jump to label
TONI if this is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits

JNZ TONI ; At least one bit is set in R5

... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7

JC TONI ; At least one bit is set

... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output
Port1. Jump to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1

JNC TONI ; No corresponding bit is set

... ; At least one bit is set

 MSP430 Instructions

4-6916-Bit MSP430X CPU

* BR, BRANCH Branch to destination in lower 64K address space

Syntax BR dst

Operation dst −> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K
address space. All source addressing modes can be used. The branch
instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

 MSP430 Instructions

4-70 16-Bit MSP430X CPU

CALL Call a Subroutine in lower 64 K

Syntax CALL dst

Operation dst → tmp 16-bit dst is evaluated and stored
SP − 2 → SP
PC → @SP updated PC with return address to TOS
tmp→ PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64 K to a subroutine
address in the lower 64 K. All seven source addressing modes can be used.
The call instruction is a word instruction. The return is made with the RET
instruction.

Status Bits Not affected
PC.19:16: Cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly
to address.

CALL #EXEC ; Start address EXEC

CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address
EXEC. EXEC is located at the address (PC + X) where X is within PC±32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute
address EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 16-bit address contained in register
R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word
pointed to by register R5 (20-bit address).

CALL @R5 ; Start address at @R5

 MSP430 Instructions

4-7116-Bit MSP430X CPU

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 −> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 −> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 −> TONI

 MSP430 Instructions

4-72 16-Bit MSP430X CPU

* CLRC Clear carry bit

Syntax CLRC

Operation 0 −> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

 MSP430 Instructions

4-7316-Bit MSP430X CPU

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

 MSP430 Instructions

4-74 16-Bit MSP430X CPU

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address con-
tained in the word pointed to by register R5 (20-bit address) and increment the
16-bit address in R5 afterwards by 2. The next time the software uses R5 as
a pointer, it can alter the program execution due to access to the next word ad-
dress in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit
address pointed to by register (R5 + X), e.g. a table with addresses starting at
X. The address is within the lower 64 KB. X is within ±32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

 MSP430 Instructions

4-7516-Bit MSP430X CPU

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation (.not.src) + 1 + dst or dst − src

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The result
affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src = dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if
EDE equals the constant. The address of EDE is within PC ± 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h

JEQ TONI ; EDE contains 1800h

... ; Not equal

Example A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if
R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The
address of the source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers

JL TONI ; R7 < 10(R5)

... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in
output Port1. Jump to label TONI if values are equal. The next table byte is
addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1

JEQ TONI ; Equal contents

... ; Not equal

 MSP430 Instructions

4-76 16-Bit MSP430X CPU

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C −> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

 MSP430 Instructions

4-7716-Bit MSP430X CPU

DADD[.W] Add source word and carry decimally to destination word
DADD.B Add source byte and carry decimally to destination byte

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C → dst (decimally)

Description The source operand and the destination operand are treated as two (.B) or four
(.W) binary coded decimals (BCD) with positive signs. The source operand
and the carry bit C are added decimally to the destination operand. The source
operand is not affected. The previous content of the destination is lost. The
result is not defined for non-BCD numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset

otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and
BCD+2 is added decimally to an eight-digit BCD number contained in R4 and
R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry

DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0

DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0

JC OVERFLOW ; Result >9999,9999: go to error
 routine

... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added
decimally to a two-digit BCD number contained in R4. The carry C is added,
also. R4.19:8 = 0

CLRC ; Clear carry

DADD.B &BCD,R4 ; Add BCD to R4 decimally.
 R4: 0,00ddh

 MSP430 Instructions

4-78 16-Bit MSP430X CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst − 1 −> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI−EDE−1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 4−36.

Figure 4−36. Decrement Overlap

EDE

EDE+254

TONI

TONI+254

 MSP430 Instructions

4-7916-Bit MSP430X CPU

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst − 2 −> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI−EDE−2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

 MSP430 Instructions

4-80 16-Bit MSP430X CPU

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst −> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

 MSP430 Instructions

4-8116-Bit MSP430X CPU

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR −> SR / .src .OR. dst −> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

 MSP430 Instructions

4-82 16-Bit MSP430X CPU

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 −> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

 MSP430 Instructions

4-8316-Bit MSP430X CPU

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 −> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

 MSP430 Instructions

4-84 16-Bit MSP430X CPU

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst −> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

 MSP430 Instructions

4-8516-Bit MSP430X CPU

JC Jump if carry
JHS Jump if Higher or Same (unsigned)

Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is reset, the
instruction after the jump is executed.

JC is used for the test of the carry bit C

JHS is used for the comparison of unsigned numbers

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C

JC Label1 ; Yes, proceed at Label1

... ; No, continue

Example If R5 ≥ R6 (unsigned) the program continues at Label2

CMP R6,R5 ; Is R5 ≥ R6? Info to C

JHS Label2 ; Yes, C = 1

... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands) the program continues at Label2

CMPA #12345h,R5 ; Is R5 ≥ 12345h? Info to C

JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1

... ; No, R5 < 12345h. Continue

 MSP430 Instructions

4-86 16-Bit MSP430X CPU

JEQ,JZ Jump if equal,Jump if zero

Syntax JZ label

JEQ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The Zero bit Z in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is reset, the
instruction after the jump is executed.

JZ is used for the test of the Zero bit Z

JEQ is used for the comparison of operands

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The state of the P2IN.0 bit defines the program flow

BIT.B #1,&P2IN ; Port 2, bit 0 reset?

JZ Label1 ; Yes, proceed at Label1

... ; No, set, continue

Example If R5 = 15000h (20-bit data) the program continues at Label2

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR

JEQ Label2 ; Yes, R5 = 15000h. Z = 1

... ; No, R5 ≠ 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues
at Label4.

ADDA #1,R7 ; Increment R7

JZ Label4 ; Zero reached: Go to Label4

... ; R7 ≠ 0. Continue here.

 MSP430 Instructions

4-8716-Bit MSP430X CPU

JGE Jump if Greater or Equal (signed)

Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If both
bits are set or both are reset, the signed 10-bit word offset contained in the
instruction is multiplied by two, sign extended, and added to the 20-bit program
counter PC. This means a jump in the range -511 to +512 words relative to the
PC in full Memory range. If only one bit is set, the instruction after the jump is
executed.

JGE is used for the comparison of signed operands: also for incorrect results
due to overflow, the decision made by the JGE instruction is correct.

Note: JGE emulates the non-implemented JP (jump if positive) instruction if
used after the instructions AND, BIT, RRA, SXTX and TST. These instructions
clear the V-bit.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run
in the full memory range.

TST.B &EDE ; Is EDE positive? V <- 0

JGE Label1 ; Yes, JGE emulates JP

... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to the memory pointed to by R7, the
program continues a Label5. Signed data. Data and program in full memory
range.

CMP @R7,R6 ; Is R6 ≥ @R7?

JGE Label5 ; Yes, go to Label5

... ; No, continue here.

Example If R5 ≥ 12345h (signed operands) the program continues at Label2. Program
in full memory range.

CMPA #12345h,R5 ; Is R5 ≥ 12345h?

JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh.

... ; No, 80000h <= R5 < 12345h.

 MSP430 Instructions

4-88 16-Bit MSP430X CPU

JL Jump if Less (signed)

Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If only
one is set, the signed 10-bit word offset contained in the instruction is multiplied
by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full memory
range. If both bits N and V are set or both are reset, the instruction after the
jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due
to overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE contains a smaller, signed operand than byte TONI, continue at
Label1. The address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI

JL Label1 ; Yes

... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit
address) the program continues at Label Label5. Data and program in full
memory range.

CMP @R7,R6 ; Is R6 < @R7?

JL Label5 ; Yes, go to Label5

... ; No, continue here.

Example If R5 < 12345h (signed operands) the program continues at Label2. Data and
program in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?

JL Label2 ; Yes, 80000h =< R5 < 12345h.

... ; No, 12344h < R5 =< 7FFFFh.

 MSP430 Instructions

4-8916-Bit MSP430X CPU

JMP Jump unconditionally

Syntax JMP label

Operation PC + (2 × Offset) → PC

Description The signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit program counter PC. This means an
unconditional jump in the range -511 to +512 words relative to the PC in the full
memory. The JMP instruction may be used as a BR or BRA instruction within its
limited range relative to the program counter.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data
in lower 64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10

JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow.
Program in full memory range, but interrupt handlers always starts in lower
64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC

RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt

JMP IHCCR2 ; Timer block 2 caused interrupt

RETI ; No legal interrupt, return

 MSP430 Instructions

4-90 16-Bit MSP430X CPU

JN Jump if Negative

Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the status register is tested. If it is set, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If N is reset, the
instruction after the jump is executed.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte COUNT is tested. If it is negative, program execution continues at
Label0. Data in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?

JN Label0 ; Yes, proceed at Label0

... ; COUNT ≥ 0

Example R6 is subtracted from R5. If the result is negative, program continues at
Label2. Program in full memory range.

SUB R6,R5 ; R5 − R6 -> R5

JN Label2 ; R5 is negative: R6 > R5 (N = 1)

... ; R5 ≥ 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JN Label4 ; R7 < 0: Go to Label4

... ; R7 ≥ 0. Continue here.

 MSP430 Instructions

4-9116-Bit MSP430X CPU

JNC Jump if No carry
JLO Jump if lower (unsigned)

Syntax JNC label
JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the status register is tested. If it is reset, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is set, the
instruction after the jump is executed.

JNC is used for the test of the carry bit C

JLO is used for the comparison of unsigned numbers .

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE < 15 the program continues at Label2. Unsigned data. Data in
lower 64 K, program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C

JLO Label2 ; Yes, EDE < 15. C = 0

... ; No, EDE ≥ 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The
address of TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C

JNC Label0 ; No carry

... ; Carry = 1: continue here

 MSP430 Instructions

4-92 16-Bit MSP430X CPU

JNZ Jump if Not Zero
JNE Jump if Not Equal

Syntax JNZ label
JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is set, the
instruction after the jump is executed.

JNZ is used for the test of the Zero bit Z

JNE is used for the comparison of operands

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte STATUS is tested. If it is not zero, the program continues at Label3.
The address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?

JNZ Label3 ; No, proceed at Label3

... ; Yes, continue here

Example If word EDE ≠ 1500 the program continues at Label2. Data in lower 64 K,
program in full memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR

JNE Label2 ; No, EDE ≠ 1500.

... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JNZ Label4 ; Zero not reached: Go to Label4

... ; Yes, R7 = 0. Continue here.

 MSP430 Instructions

4-9316-Bit MSP430X CPU

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src → dst

Description The source operand is copied to the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table
TOM. The length of the tables is 030h words. Both tables reside in the lower
64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)

Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
 R10+2

CMP #EDE+60h,R10 ; End of table reached?

JLO Loop ; Not yet

... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table
TOM. The length of the tables is 020h bytes. Both tables may reside in full
memory range, but must be within R10 ±32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done

... ; Copy completed

 MSP430 Instructions

4-94 16-Bit MSP430X CPU

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

 MSP430 Instructions

4-9516-Bit MSP430X CPU

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP −> temp
SP + 2 −> SP
temp −> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

 MSP430 Instructions

4-96 16-Bit MSP430X CPU

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack

Syntax PUSH dst or PUSH.W dst
PUSH.B dst

Operation SP − 2 → SP
dst → @SP

Description The 20-bit stack pointer SP is decremented by two. The operand is then copied
to the RAM word addressed by the SP. A pushed byte is stored in the low byte,
the high byte is not affected.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh

PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI
are within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh

PUSH.B TONI ; Save TONI xxYYh

 MSP430 Instructions

4-9716-Bit MSP430X CPU

RET Return from subroutine

Syntax RET

Operation @SP → PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL
instruction is restored to the PC. The program continues at the address
following the subroutine call. The four MSBs of the program counter PC.19:16
are cleared.

Status Bits Not affected
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower
64K after the CALL

CALL #SUBR ; Call subroutine starting at SUBR

... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)

... ; Subroutine code

POP R14 ; Restore R14

RET ; Return to lower 64 K

Figure 4−37. The Stack After a RET Instruction

Item n

PCReturn

Item n

Stack before RET Stack after RET

SP

SP

instruction instruction

 MSP430 Instructions

4-98 16-Bit MSP430X CPU

RETI Return from interrupt

Syntax RETI

Operation @SP → SR.15:0 Restore saved status register SR with PC.19:16
SP + 2 → SP
@SP → PC.15:0 Restore saved program counter PC.15:0
SP + 2 → SP House keeping

Description The status register is restored to the value at the beginning of the interrupt
service routine. This includes the four MSBs of the program counter PC.19:16.
The stack pointer is incremented by two afterwards.

The 20-bit PC is restored from PC.19:16 (from same stack location as the
status bits) and PC.15:0. The 20-bit program counter is restored to the value
at the beginning of the interrupt service routine. The program continues at the
address following the last executed instruction when the interrupt was granted.
The stack pointer is incremented by two afterwards.

Status Bits N: restored from stack
Z: restored from stack
C: restored from stack
V: restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack

Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the
stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

... ; Interrupt handler code

POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)

RETI ; Return to 20-bit address in full memory range

 MSP430 Instructions

4-9916-Bit MSP430X CPU

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4−38.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 4−38. Destination Operand—Arithmetic Shift Left

15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2)
RLA.B R7 ; Shift left low byte of R7 (× 4)

Note: RLA Substitution

The assembler does not recognize the instruction:

 RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

 ADD @R5+,−2(R5) ADD.B @R5+,−1(R5) or ADD(.B) @R5

 MSP430 Instructions

4-100 16-Bit MSP430X CPU

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 4−39.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4−39. Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C −> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information −> Carry
RLC R5 ; Carry=P0in.1 −> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C −> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5

It must be substituted by:

ADDC @R5+,−2(R5) ADDC.B @R5+,−1(R5) or ADDC(.B) @R5

 MSP430 Instructions

4-10116-Bit MSP430X CPU

RRA[.W] Rotate Right Arithmetically destination word
RRA.B Rotate Right Arithmetically destination byte

Syntax RRA.B dst or RRA.W dst

Operation MSB → MSB → MSB-1 . →... LSB+1 → LSB → C

Description The destination operand is shifted right arithmetically by one bit position as
shown in Figure 4−40. The MSB retains its value (sign). RRA operates equal to
a signed division by 2. The MSB is retained and shifted into the MSB-1. The
LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4−40. Rotate Right Arithmetically RRA.B and RRA.W

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

 MSP430 Instructions

4-102 16-Bit MSP430X CPU

RRC[.W] Rotate Right through carry destination word
RRC.B Rotate Right through carry destination byte

Syntax RRC dst or RRC.W dst
RRC.B dst

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description The destination operand is shifted right by one bit position as shown in
Figure 4−41. The carry bit C is shifted into the MSB and the LSB is shifted into
the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB

RRC EDE ; EDE = EDE » 1 + 8000h

Figure 4−41. Rotate Right through Carry RRC.B and RRC.W

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

 MSP430 Instructions

4-10316-Bit MSP430X CPU

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C −> dst
dst + 0FFh + C −> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

 MSP430 Instructions

4-104 16-Bit MSP430X CPU

* SETC Set carry bit

Syntax SETC

Operation 1 −> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0−9 to 6−0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0−9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h − R5 − 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

 MSP430 Instructions

4-10516-Bit MSP430X CPU

* SETN Set negative bit

Syntax SETN

Operation 1 −> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

 MSP430 Instructions

4-106 16-Bit MSP430X CPU

* SETZ Set zero bit

Syntax SETZ

Operation 1 −> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

 MSP430 Instructions

4-10716-Bit MSP430X CPU

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst − src → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7.
Afterwards, if R7 contains zero, jump to label TONI. R5 is then
auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2

JZ TONI ; R7 = @R5 (before subtraction)

... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within
PC ± 32 K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

 MSP430 Instructions

4-108 16-Bit MSP430X CPU

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte

Syntax SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst − (src − 1) + C → dst

Description The source operand is subtracted from the destination operand. This is done
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Used for 32, 48, and 64-bit operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number
afterwards. The address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2

SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2

SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

 MSP430 Instructions

4-10916-Bit MSP430X CPU

SWPB Swap bytes

Syntax SWPB dst

Operation dst.15:8 ⇔ dst.7:0

Description The high and the low byte of the operand are exchanged. PC.19:16 bits are
cleared in register mode.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM word EDE (lower 64 K).

MOV #1234h,&EDE ; 1234h -> EDE

SWPB &EDE ; 3412h -> EDE

Figure 4−42. Swap Bytes in Memory

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

Figure 4−43. Swap Bytes in a Register

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

 MSP430 Instructions

4-110 16-Bit MSP430X CPU

SXT Extend sign

Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (Register Mode)

Description Register Mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8

Rdst.7 = 0: Rdst.19:8 = 000h afterwards.

Rdst.7 = 1: Rdst.19:8 = FFFh afterwards.

Other Modes: the sign of the low byte of the operand is extended into the high
byte.

dst.7 = 0: high byte = 00h afterwards.

dst.7 = 1: high byte = FFh afterwards.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the
16-bit signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh

SXT R5 ; Sign extend low byte to R5.19:8

ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC ±32 K) is sign extended and added to the
20-bit data in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh

SXT R5 ; Sign extend low byte to R5.19:8

ADDA R5,R7 ; Add signed 20-bit values

 MSP430 Instructions

4-11116-Bit MSP430X CPU

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

 MSP430 Instructions

4-112 16-Bit MSP430X CPU

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte

Syntax XOR dst or XOR.W dst
XOR.B dst

Operation src .xor. dst → dst

Description The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in
address-word TONI. Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE. R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.

INV.B R7 ; Invert low byte of R7, high byte is 0h

Extended Instructions

4-11316-Bit MSP430X CPU

4.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Some MSP430X instructions require an additional word
of op-code called the extension word. All addresses, indexes, and immediate
numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following
pages. For MSP430X instructions that do not require the extension word, it is
noted in the instruction description.

Extended Instructions

4-114 16-Bit MSP430X CPU

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte

Syntax ADCX.A dst
ADCX dst or ADCX.W dst
ADCX.B dst

Operation dst + C −> dst

Emulation ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

Extended Instructions

4-11516-Bit MSP430X CPU

ADDX.A Add source address-word to destination address-word
ADDX[.W] Add source word to destination word
ADDX.B Add source byte to destination byte

Syntax ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

Operation src + dst → dst

Description The source operand is added to the destination operand. The previous
contents of the destination are lost. Both operands can be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs)
and CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump
to label TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh

JNC TONI ; Jump if no carry

... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and
execution.
ADDX.A Rsrc,Rdst or
ADDX.A #imm20,Rdst

Extended Instructions

4-116 16-Bit MSP430X CPU

ADDCX.A Add source address-word and carry to destination address-word
ADDCX[.W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte

Syntax ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

Operation src + dst + C → dst

Description The source operand and the carry bit C are added to the destination operand.
The previous contents of the destination are lost. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant 15 and the carry of the previous instruction are added to the 20-bit
counter CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1

JNC TONI ; Jump if no carry

... ; Carry occurred

Extended Instructions

4-11716-Bit MSP430X CPU

ANDX.A Logical AND of source address-word with destination address-word
ANDX[.W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte

Syntax ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

Operation src .and. dst → dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the
address-word TOM located in two words. If the result is zero, a branch is taken
to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5

ANDX.A R5,TOM ; TOM .and. R5 -> TOM

JZ TONI ; Jump if result 0

... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM

JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6.
R6.19:8 = 0. The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

Extended Instructions

4-118 16-Bit MSP430X CPU

BICX.A Clear bits set in source address-word in destination address-word
BICX[.W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte

Syntax BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

Operation (.not. src) .and. dst → dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected. Both operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 = 0

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output
Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

Extended Instructions

4-11916-Bit MSP430X CPU

BISX.A Set bits set in source address-word in destination address-word
BISX[.W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte

Syntax BISX.A src,dst
BISX src,dst or BISX.W src,dst
BISX.B src,dst

Operation src .or. dst → dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

Extended Instructions

4-120 16-Bit MSP430X CPU

BITX.A Test bits set in source address-word in destination address-word
BITX[.W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte

Syntax BITX.A src,dst
BITX src,dst or BITX.W src,dst
BITX.B src,dst

Operation src .and. dst

Description The source operand and the destination operand are logically ANDed. The
result affects only the status bits. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits

JNZ TONI ; At least one bit is set

... ; Both are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z

JC TONI ; At least one is set

... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1.
Jump to label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1

JNC TONI ; No corresponding input bit is set

... ; At least one bit is set

Extended Instructions

4-12116-Bit MSP430X CPU

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte

Syntax CLRX.A dst
CLRX dst or CLRX.W dst
CLRX.B dst

Operation 0 −> dst

Emulation MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 −> TONI

Extended Instructions

4-122 16-Bit MSP430X CPU

CMPX.A Compare source address-word and destination address-word
CMPX[.W] Compare source word and destination word
CMPX.B Compare source byte and destination byte

Syntax CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst − src

Description The source operand is subtracted from the destination operand by adding the
1’s complement of the source + 1 to the destination. The result affects only the
status bits. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive

destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE
equals the constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h

JEQ TONI ; EDE contains 18000h

... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to
label TONI if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers

JL TONI ; R7 < @R5

... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O
Port1. Jump to label TONI if the values are equal. The next table byte is
addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1

JEQ TONI ; Equal contents

... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.
CMPA Rsrc,Rdst or
CMPA #imm20,Rdst

Extended Instructions

4-12316-Bit MSP430X CPU

* DADCX.A Add carry decimally to destination address-word
* DADCX[.W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte

Syntax DADCX.A dst
DADCX dst or DADCX.W src,dst
DADCX.B dst

Operation dst + C −> dst (decimally)

Emulation DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.
C: Set if the BCD result is too large (address-word > 99999h,

word > 9999h, byte > 99h), reset otherwise.
V: Undefined.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

Extended Instructions

4-124 16-Bit MSP430X CPU

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX[.W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte

Syntax DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

Operation src + dst + C → dst (decimally)

Description The source operand and the destination operand are treated as two (.B), four
(.W), or five (.A) binary coded decimals (BCD) with positive signs. The source
operand and the carry bit C are added decimally to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost. The result is not defined for non-BCD numbers. Both operands may
be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.
C: Set if the BCD result is too large (address-word > 99999h,

word > 9999h, byte > 99h), reset otherwise.
V: Undefined.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two
words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5
(BCD+2 and R5 contain the MSDs).

CLRC ; Clear carry

DADDX.W BCD,R4 ; Add LSDs

DADDX.W BCD+2,R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine

... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added
decimally to a two-digit BCD number contained in R4.

CLRC ; Clear carry

DADDX.B BCD,R4 ; Add BCD to R4 decimally.
; R4: 000ddh

Extended Instructions

4-12516-Bit MSP430X CPU

* DECX.A Decrement destination address-word
* DECX[.W] Decrement destination word
* DECX.B Decrement destination byte

Syntax DECX dst
DECX dst or DECX.W dst
DECX.B dst

Operation dst − 1 −> dst

Emulation SUBX.A #1,dst
SUBX #1,dst
SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 1

DECX.A TONI ; Decrement TONI

Extended Instructions

4-126 16-Bit MSP430X CPU

* DECDX.A Double-decrement destination address-word
* DECDX[.W] Double-decrement destination word
* DECDX.B Double-decrement destination byte

Syntax DECDX.A dst
DECDX dst or DECDX.W dst
DECDX.B dst

Operation dst − 2 −> dst

Emulation SUBX.A #2,dst
SUBX #2,dst
SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 2.

DECDX.A TONI ; Decrement TONI by two

Extended Instructions

4-12716-Bit MSP430X CPU

* INCX.A Increment destination address-word
* INCX[.W] Increment destination word
* INCX.B Increment destination byte

Syntax INCX.A dst
INCX dst or INCX.W dst
INCX.B dst

Operation dst + 1 −> dst

Emulation ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise

Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is incremented by 1.

INCX.A TONI ; Increment TONI (20-bits)

Extended Instructions

4-128 16-Bit MSP430X CPU

* INCDX.A Double-increment destination address-word
* INCDX[.W] Double-increment destination word
* INCDX.B Double-increment destination byte

Syntax INCDX.A dst
INCDX dst or INCDX.W dst
INCDX.B dst

Operation dst + 2 −> dst

Emulation ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFEh, reset otherwise

Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is incremented by two; PC points to upper memory

INCDX.B LEO ; Increment LEO by two

Extended Instructions

4-12916-Bit MSP430X CPU

* INVX.A Invert destination
* INVX[.W] Invert destination
* INVX.B Invert destination

Syntax INVX.A dst
INVX dst or INVX.W dst
INVX.B dst

Operation .NOT.dst −> dst

Emulation XORX.A #0FFFFFh,dst
XORX #0FFFFh,dst
XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise

Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example 20-bit content of R5 is negated (twos complement).
INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory
INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

Extended Instructions

4-130 16-Bit MSP430X CPU

MOVX.A Move source address-word to destination address-word
MOVX[.W] Move source word to destination word
MOVX.B Move source byte to destination byte

Syntax MOVX.A src,dst
MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

Operation src → dst

Description The source operand is copied to the destination. The source operand is not
affected. Both operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table
TOM. The length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
 R10+2

CMPA #EDE+60h,R10 ; End of table reached?

JLO Loop ; Not yet

... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table
TOM. The length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

Loop MOVX.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done

... ; Copy completed

Extended Instructions

4-13116-Bit MSP430X CPU

Ten of the 28 possible addressing combinations of the MOVX.A instruction can
use the MOVA instruction. This saves two bytes and code cycles. Examples
for the addressing combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg

MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg

MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg

MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg

MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg

MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for
the addressing.

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg

MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed

MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg

MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

Extended Instructions

4-132 16-Bit MSP430X CPU

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM[.W] Restore n CPU registers (16-bit data) from the stack

Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16
POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16

Operation POPM.A: Restore the register values from stack to the specified CPU
registers. The stack pointer SP is incremented by four for each register
restored from stack. The 20-bit values from stack (2 words per register) are
restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU
registers. The stack pointer SP is incremented by two for each register
restored from stack. The 16-bit values from stack (one word per register) are
restored to the CPU registers.

Note : This does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended
CPU registers, starting with the CPU register (Rdst - n + 1). The stack pointer
is incremented by (n × 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the
CPU registers, starting with CPU register (Rdst - n + 1). The stack pointer is
incremented by (n × 2) after the instruction. The MSBs (Rdst.19:16) of the
restored CPU registers are cleared

Status Bits Not affected, except SR is included in the operation

Mode Bits OSCOFF, CPUOFF, and GIE are not affected, except SR is included in the op-
eration.

Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

Extended Instructions

4-13316-Bit MSP430X CPU

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM[.W] Save n CPU registers (16-bit words) on the stack

Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16
PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16

Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer
(SP) is decremented by four for each register stored on the stack. The MSBs
are stored first (higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack
pointer is decremented by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on
the stack. The stack pointer is decremented by (n × 4) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the
stack. The stack pointer is decremented by (n × 2) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

Note : This instruction does not use the extension word.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

Extended Instructions

4-134 16-Bit MSP430X CPU

* POPX.A Restore single address-word from the stack
* POPX[.W] Restore single word from the stack
* POPX.B Restore single byte from the stack

Syntax POPX.A dst
POPX dst or POPX.W dst
POPX.B dst

Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit
addresses are possible. The stack pointer SP is incremented by two (byte and
word operands) and by four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register Mode, Indexed
Mode, Symbolic Mode, and Absolute Mode are possible. The stack pointer is
incremented by two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Write the 16-bit value on TOS to the 20-bit address &EDE.

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9.

POPX.A R9 ; Write address-word to R9

Extended Instructions

4-13516-Bit MSP430X CPU

PUSHX.A Save a single address-word on the stack
PUSHX[.W] Save a single word on the stack
PUSHX.B Save a single byte on the stack

Syntax PUSHX.A src
PUSHX src or PUSHX.W src
PUSHX.B src

Operation Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses
are possible. The stack pointer (SP) is decremented by two (byte and word
operands) or by four (address-word operand) before the write operation.

Description The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All
seven addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

Extended Instructions

4-136 16-Bit MSP430X CPU

RLAM.A Rotate Left Arithmetically the 20-bit CPU register content
RLAM[.W] Rotate Left Arithmetically the 16-bit CPU register content

Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4
RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0

Description The destination operand is shifted arithmetically left one, two, three, or four
positions as shown in Figure 4−44. RLAM works as a multiplication (signed
and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3

(n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to
an arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 4−44. Rotate Left Arithmetically RLAM[.W] and RLAM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

Extended Instructions

4-13716-Bit MSP430X CPU

* RLAX.A Rotate left arithmetically address-word
* RLAX[.W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte

Syntax RLAX.B dst
RLAX dst or RLAX.W dst
RLAX.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− 0

Emulation ADDX.A dst,dst
ADDX dst,dst
ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4−45.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX
instruction acts as a signed multiplication by 2.

Figure 4−45. Destination Operand—Arithmetic Shift Left

MSB 0

C 0

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 040000h ≤ dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

Extended Instructions

4-138 16-Bit MSP430X CPU

* RLCX.A Rotate left through carry address-word
* RLCX[.W] Rotate left through carry word
* RLCX.B Rotate left through carry byte

Syntax RLCX.A dst
RLCX dst or RLCX.W dst
RLCX.B dst

Operation C <− MSB <− MSB−1 LSB+1 <− LSB <− C

Emulation ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4−46.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4−46. Destination Operand—Carry Left Shift

MSB 0

C

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 040000h ≤ dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C −> R5

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory

RLCX.B LEO ; RAM(LEO) x 2 + C −> RAM(LEO)

Extended Instructions

4-13916-Bit MSP430X CPU

RRAM.A Rotate Right Arithmetically the 20-bit CPU register content
RRAM[.W] Rotate Right Arithmetically the 16-bit CPU register content

Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4
RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4

Operation MSB → MSB → MSB-1 …. LSB+1 → LSB → C

Description The destination operand is shifted right arithmetically by one, two, three, or
four bit positions as shown in Figure 4−47. The MSB retains its value (sign).
RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained
and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is
shifted into the carry bit C. The word instruction RRAM.W clears the bits
Rdst.19:16.

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15

PUSHM.A #1,R15 ; Save extended R15 on stack

RRAM.A #1,R15 ; R15 × 0.5 -> R15

ADDX.A @SP+,R15 ; R15 × 0.5 + R15 = 1.5 × R15 -> R15

RRAM.A #1,R15 ; (1.5 × R15) × 0.5 = 0.75 × R15 -> R15

Figure 4−47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

Extended Instructions

4-140 16-Bit MSP430X CPU

RRAX.A Rotate Right Arithmetically the 20-bit operand
RRAX[.W] Rotate Right Arithmetically the 16-bit operand
RRAX.B Rotate Right Arithmetically the 8-bit operand

Syntax RRAX.A Rdst
RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst

RRAX.A dst
RRAX.W dst or RRAX dst
RRAX.B dst

Operation MSB → MSB → MSB-1 LSB+1 → LSB → C

Description Register Mode for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4−48. The MSB retains its value (sign). The
word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction
RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is
shifted into the carry bit. RRAX here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right
arithmetically by one bit position as shown in Figure 4−49. The MSB retains
its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal
to a signed division by 2. All addressing modes − with the exception of the
Immediate Mode − are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Extended Instructions

4-14116-Bit MSP430X CPU

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 −> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

RRAX.B &EDE ; EDE/2 -> EDE

Figure 4−48. Rotate Right Arithmetically RRAX(.B,.A). Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

Figure 4−49. Rotate Right Arithmetically RRAX(.B,.A). Non-Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Extended Instructions

4-142 16-Bit MSP430X CPU

RRCM.A Rotate Right through carry the 20-bit CPU register content
RRCM[.W] Rotate Right through carry the 16-bit CPU register content

Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4
RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4−50. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. The word instruction RRCM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The address-word in R5 is shifted right by three positions. The MSB-2 is
loaded with 1.

SETC ; Prepare carry for MSB-2

RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the
LSB. The MSB-1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0

Figure 4−50. Rotate Right Through Carry RRCM[.W] and RRCM.A

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

Extended Instructions

4-14316-Bit MSP430X CPU

RRCX.A Rotate Right through carry the 20-bit operand
RRCX[.W] Rotate Right through carry the 16-bit operand
RRCX.B Rotate Right through carry the 8-bit operand

Syntax RRCX.A Rdst
RRCX.W Rdst
RRCX Rdst
RRCX.B Rdst

RRCX.A dst
RRCX.W dst or RRCX dst
RRCX.B dst

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description Register Mode for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4−51. The word instruction RRCX.W clears
the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The
carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4−52. The carry bit C is shifted into the
MSB, the LSB is shifted into the carry bit. All addressing modes − with the ex-
ception of the Immediate Mode − are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Extended Instructions

4-144 16-Bit MSP430X CPU

Example The 20-bit operand at address EDE is shifted right by one position. The MSB is
loaded with 1.

SETC ; Prepare carry for MSB

RRCX.A EDE ; EDE = EDE » 1 + 80000h

Example The word in R6 is shifted right by twelve positions.

RPT #12
RRCX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4−51. Rotate Right Through Carry RRCX(.B,.A). Register Mode

C

19 0

MSB0 − 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

Figure 4−52. Rotate Right Through Carry RRCX(.B,.A). Non-Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Extended Instructions

4-14516-Bit MSP430X CPU

RRUM.A Rotate Right Unsigned the 20-bit CPU register content
RRUM[.W] Rotate Right Unsigned the 16-bit CPU register content

Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4
RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4

Operation 0 → MSB → MSB-1 . →... LSB+1 → LSB → C

Description The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4−53. Zero is shifted into the MSB, the LSB is shifted into
the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word
instruction RRUM.W clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 » 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 4−53. Rotate Right Unsigned RRUM[.W] and RRUM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

Extended Instructions

4-146 16-Bit MSP430X CPU

RRUX.A Rotate Right unsigned the 20-bit operand
RRUX[.W] Rotate Right unsigned the 16-bit operand
RRUX.B Rotate Right unsigned the 8-bit operand

Syntax RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst

Operation C=0 → MSB → MSB-1 → ... LSB+1 → LSB → C

Description RRUX is valid for register Mode only: the destination operand is shifted right by
one bit position as shown in Figure 4−54. The word instruction RRUX.W clears
the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8.
Zero is shifted into the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The word in R6 is shifted right by twelve positions.

RPT #12
RRUX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4−54. Rotate Right Unsigned RRUX(.B,.A). Register Mode

C

19 0

MSB0 − 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

Extended Instructions

4-14716-Bit MSP430X CPU

* SBCX.A Subtract source and borrow/.NOT. carry from destination address-word
* SBCX[.W] Subtract source and borrow/.NOT. carry from destination word
* SBCX.B Subtract source and borrow/.NOT. carry from destination byte

Syntax SBCX.A dst
SBCX dst or SBCX.W dst
SBCX.B dst

Operation dst + 0FFFFFh + C −> dst
dst + 0FFFFh + C −> dst
dst + 0FFh + C −> dst

Emulation SUBCX.A #0,dst
SUBCX #0,dst
SUBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
 Yes 0
 No 1

Extended Instructions

4-148 16-Bit MSP430X CPU

SUBX.A Subtract source address-word from destination address-word
SUBX[.W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte

Syntax SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst − src → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected. The result is written to the destination operand. Both
operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to
label TONI if R7 contains zero after the instruction. R5 is auto-incremented by
2. R7.19:16 = 0

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2

JZ TONI ; R7 = @R5 (before subtraction)

... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space.
Address of CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.
SUBX.A Rsrc,Rdst or
SUBX.A #imm20,Rdst

Extended Instructions

4-14916-Bit MSP430X CPU

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX[.W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte

Syntax SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst − (src − 1) + C → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted from R5 with the carry from the
previous instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the
next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2

SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2

SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

Extended Instructions

4-150 16-Bit MSP430X CPU

SWPBX.A Swap bytes of lower word
SWPBX[.W] Swap bytes of word

Syntax SWPBX.A dst
SWPBX.W dst or SWPBX dst

Operation dst.15:8 � dst.7:0

Description Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is
used, Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are
cleared.
Other Modes: When the .A extension is used, bits 31:20 of the destination
address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped
with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits
7:0 of the addressed word.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h −> EDE

SWPBX.A EDE ; 25634h −> EDE

Example Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h −> R5
SWPBX.W R5 ; 05634h −> R5

Figure 4−55. Swap Bytes SWPBX.A Register Mode

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

Extended Instructions

4-15116-Bit MSP430X CPU

Figure 4−56. Swap Bytes SWPBX.A In Memory

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

Figure 4−57. Swap Bytes SWPBX[.W] Register Mode

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

Figure 4−58. Swap Bytes SWPBX[.W] In Memory

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

Extended Instructions

4-152 16-Bit MSP430X CPU

SXTX.A Extend sign of lower byte to address-word
SXTX[.W] Extend sign of lower byte to word

Syntax SXTX.A dst
SXTX.W dst or SXTX dst

Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register Mode)

Description Register Mode:
The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.

Other Modes:
SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.

SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into
dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits
31:20 located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE −> EDE+2/EDE

Figure 4−59. Sign Extend SXTX.A

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

Extended Instructions

4-15316-Bit MSP430X CPU

Figure 4−60. Sign Extend SXTX[.W]

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

Extended Instructions

4-154 16-Bit MSP430X CPU

* TSTX.A Test destination address-word
* TSTX[.W] Test destination word
* TSTX.B Test destination byte

Syntax TSTX.A dst
TSTX dst or TST.W dst
TST.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative,
continue at LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

Extended Instructions

4-15516-Bit MSP430X CPU

XORX.A Exclusive OR source address-word with destination address-word
XORX[.W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte

Syntax XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

Operation src .xor. dst → dst

Description The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in address-word CNTR (20-bit data) with information in
address-word TONI (20-bit address).

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE (20-bit address).

XORX.B EDE,R7 ; Set different bits to 1 in R7

INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

Address Instructions

4-156 16-Bit MSP430X CPU

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the Register mode and the Immediate mode, except for the MOVA
instruction. Restricting the addressing modes removes the need for the
additional extension-word op-code improving code density and execution
time. The MSP430X address instructions are listed and described in the
following pages.

Address Instructions

4-15716-Bit MSP430X CPU

ADDA Add 20-bit source to a 20-bit destination register

Syntax ADDA Rsrc,Rdst
ADDA #imm20,Rdst

Operation src + Rdst → Rdst

Description The 20-bit source operand is added to the 20-bit destination CPU register. The
previous contents of the destination are lost. The source operand is not
affected.

Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5

JC TONI ; Jump on carry

... ; No carry occurred

Address Instructions

4-158 16-Bit MSP430X CPU

* BRA Branch to destination

Syntax BRA dst

Operation dst → PC

Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full
address space. All seven source addressing modes can be used. The branch
instruction is an address-word instruction. If the destination address is
contained in a memory location X, it is contained in two ascending words: X
(LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address
space or branch directly to address.

BRA #EDE ; MOVA #imm20,PC

BRA #01AA04h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where
X is within ±32 K. Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the
following instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect
R5.

BRA R5 ; MOVA R5,PC

Address Instructions

4-15916-Bit MSP430X CPU

Indirect Mode: Branch to the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect
R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the
words pointed to by register R5 and increment the address in R5 afterwards
by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program
execution due to access to the next address in the table pointed to by R5. Indi-
rect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed
to by register (R5 + X) (e.g. a table with addresses starting at X). (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within
R5 ± 32 K. Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the
following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

Address Instructions

4-160 16-Bit MSP430X CPU

CALLA Call a Subroutine

Syntax CALLA dst

Operation dst → tmp20-bit dst is evaluated and stored
SP − 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP − 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The call instruction is
an address-word instruction. If the destination address is contained in a
memory location X, it is contained in two ascending words: X (LSBs) and
(X + 2) (MSBs). Two words on the stack are needed for the return address.
The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC

CALLA #01AA04h ; Start address 01AA04h

Symbolic Mode: Call a subroutine at the 20-bit address contained in address-
es EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address
(PC + X) where X is within ±32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute
addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register
R5. Indirect R5.

CALLA R5 ; Start address at @R5

Address Instructions

4-16116-Bit MSP430X CPU

Indirect Mode: Call a subroutine at the 20-bit address contained in the word
pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indi-
rect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address con-
tained in the words pointed to by register R5 and increment the 20-bit address
in R5 afterwards by 4. The next time the S/W flow uses R5 as a pointer, it can
alter the program execution due to access to the next word address in the table
pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the ad-
dress pointed to by register (R5 + X) e.g. a table with addresses starting at X.
(R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word ad-
dress. X is within R5 ±32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

Address Instructions

4-162 16-Bit MSP430X CPU

* CLRA Clear 20-bit destination register

Syntax CLRA Rdst

Operation 0 −> Rdst

Emulation MOVA #0,Rdst

Description The destination register is cleared.

Status Bits Status bits are not affected.

Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 −> R10

Address Instructions

4-16316-Bit MSP430X CPU

CMPA Compare the 20-bit source with a 20-bit destination register

Syntax CMPA Rsrc,Rdst
CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst − src

Description The 20-bit source operand is subtracted from the 20-bit destination CPU
register. This is made by adding the 1’s complement of the source + 1 to the
destination register. The result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive

destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit immediate operand and R6 are compared. If they are equal the
program continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h

JEQ EQUAL ; R5 = 12345h

... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or
equal to R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 − R6)

JGE GRE ; R5 >= R6

... ; R5 < R6

Address Instructions

4-164 16-Bit MSP430X CPU

* DECDA Double-decrement 20-bit destination register

Syntax DECDA Rdst

Operation Rdst − 2 −> Rdst

Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is decremented by 2

DECDA R5 ; Decrement R5 by two

Address Instructions

4-16516-Bit MSP430X CPU

* INCDA Double-increment 20-bit destination register

Syntax INCDA Rdst

Operation dst + 2 −> dst

Emulation ADDA #2,Rdst

Example The destination register is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if Rdst contained 0FFFFEh, reset otherwise

Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is incremented by 2

INCDA R5 ; Increment R5 by two

Address Instructions

4-166 16-Bit MSP430X CPU

MOVA Move the 20-bit source to the 20-bit destination

Syntax MOVA Rsrc,Rdst
MOVA #imm20,Rdst
MOVA z16(Rsrc),Rdst
MOVA EDE,Rdst

 MOVA &abs20,Rdst
MOVA @Rsrc,Rdst
MOVA @Rsrc+,Rdst
MOVA Rsrc,z16(Rdst)

 MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source
operand is not affected. The previous content of the destination is lost.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Copy 20-bit value in R9 to R8.

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in ad-
dresses (R9 + 100h) LSBs and (R9 + 102h) MSBs

MOVA 100h(R9),R8 ; Index: ± 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2
(MSBs) to R12.

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12.
PC index ±32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in
addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

Address Instructions

4-16716-Bit MSP430X CPU

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by
four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2)
MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination
operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and
EDE+2 (MSBs).

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs).
PC index ±32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

Address Instructions

4-168 16-Bit MSP430X CPU

* RETA Return from subroutine

Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA
instruction, is restored to the program counter PC. The program continues at
the address following the subroutine call. The status register bits SR.11:0 are
not affected. This allows the transfer of information with these bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR from anywhere in the 20-bit address space and return
to the address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR

... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)

... ; Subroutine code

POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)

RETA ; Return (to full address space)

Address Instructions

4-16916-Bit MSP430X CPU

* TSTA Test 20-bit destination register

Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set
according to the result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is
positive but not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Address Instructions

4-170 16-Bit MSP430X CPU

SUBA Subtract 20-bit source from 20-bit destination register

Syntax SUBA Rsrc,Rdst
SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst − src → Rdst

Description The 20-bit source operand is subtracted from the 20-bit destination register.
This is made by adding the 1’s complement of the source + 1 to the
destination. The result is written to the destination register, the source is not
affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program
continues at label TONI.

SUBA R5,R6 ; R6 − R5 -> R6

JC TONI ; Carry occurred

... ; No carry

