

Système d'étalonnage pour mécanisme de précision

Travail proposé par : ESO, Observatoire VLT de Paranal au Chili

Réalisé par SÉBASTIEN DUBATH

Dr. Lorenzo Zago, Responsable de projet

Travail de Bachelor 2011

Département TIN - Filière Microtechnique

Remerciements

Parce qu'il est toujours plus facile de réaliser un travail lorsqu'on est bien entouré, je tiens à faire quelques remerciements :

J'aimerais dans un premier temps remercier mon professeur LORENZO ZAGO pour son suivi et sa disponibilité. Il m'a accordé une entière confiance lors des différents choix à réaliser.

Je remercie également JEAN-MICHEL MAYOR pour ses conseils précieux en optique.

Un grand merci à l'atelier d'usinage de l'école pour la réalisation des pièces, leur savoirfaire et pour leur disponibilité.

A ma famille, pour les nombreuses relectures et leur soutien tout au long du projet.

Et enfin une pensée à mes collègues, pour la bonne ambiance, leurs conseils et pour les bons moments passés ensemble.

Résumé

Une nouvelle méthode de métrologie basée sur l'observation à distance d'une mire par une caméra USB permet de mesurer des déplacements dans les deux axes d'un plan avec une grande précision. Étendre ce type de mesure à un réseau de trois caméras permet de mesurer les déplacements relatifs d'une surface dans l'espace. Cette méthode, très abordable par son coût et suffisamment robuste pour être utilisée dans des milieux de production, pourrait à terme s'étendre à de multiples applications industrielles.

Le travail présenté dans ce rapport est une première élaboration d'une application de ce nouveau concept de métrologie. Il s'agit d'étalonner d'un mécanisme de haute précision type hexapode utilisé en astronomie pour l'alignement des miroirs sphériques dans les télescopes.

Mots clefs

Métrologie - Degrés de liberté - Hexapode - Étalonnage - Caméra - Positionnement - Précision - Séries de Fourier - Mire - Miroir secondaire - Télescope

Département **TIN** Filière **Microtechniques - MI** Candidat : **Sébastien Dubath**

Diplôme 2011

Système d'étalonnage pour mécanismes de précision

Cahier des charges

- Complément de formation et recherche documentaire sur les instruments de mesure sans contact pour les mécanismes de grande précision.
- Compréhension et assimilation du système de mesure développé précédemment (projet F. Chevalley) dans tous ses aspects (approche métrologique, mathématique, logiciel).
- Conception du système d'étalonnage avec une configuration optimale de caméras et mires pour 6 dégrés de liberté. Identification de tous ces éléments mécaniques, optiques, électriques et logiciels. Schémas électriques. Design CAO.
- Dessins de fabrications et/ou spécifications d'achat de tous les composants.
- Achat, fabrication des composants et montage. Réalisation du banc d'étalonnage.
- Réalisation du logiciel de commande.
- Essais et validation du système.
- Rapports intermédiaires et finaux.

Le candidat :

Sébastien Dubath

Le professeur responsable :

Lorenzo Zago

Le chef du département des Technologies industrielles

Prof. Michel Etique

Table des matières

1	Intr 1.1 1.2	coduction Objectif du travail Contexte	1 1 2
2	Éta	t de l'art	5
	2.1	Hexapode utilisé	5
	2.2	Méthode d'étalonnage existante	6
		2.2.1 L'interféromètre	7
		2.2.2 L'autocollimateur	7
	2.3	Pourquoi développer une nouvelle méthode	8
3	Mét	thode de mesure	9
	3.1	Précision	0
	3.2	Choix de la mire	1
	3.3	Traitement de l'image 11	2
		$3.3.1$ Initialisation $\ldots \ldots 11$	2
		3.3.2 Localisation	2
		3.3.3 Décodage	3
		3.3.4 Position fine	4
	3.4	Mesure d'une rotation	4
	3.5	Prise en main de la méthode	5
4	Stru	ucture du prototype 1'	7
	4.1	Caractéristiques de la structure	7
	4.2	Etude de conception	8
		4.2.1 Trépied en profilé	8
		4.2.2 Cadre en profilé 19	9
		4.2.3 Plateau tournant	0
	4.3	Développement de la structure finale	0
		4.3.1 Choix des matériaux	2
		4.3.2 Etude de déformation	3
	4.4	Photos du banc de test	4
5	Écla	airage 2	5
	5.1	Choix des lampes	5
	5.2	Utilisation d'un filtre	5
	5.3	Impression de la mire	6
	5.4	Éclairage idéal de la mire	6

6	Opt	ique	27
	6.1	Choix des caméras	27
	6.2	Géométrie du système	28
	6.3	Dimensionnement des objectifs	28
		6.3.1 Objectif vertical	29
		6.3.2 Objectif à 45°	30
		6.3.3 Objectif horizontal	31
	6.4	Choix du miroir	31
	6.5	Références du matériel optique	31
	6.6	Calcul des Tip-Tilts	32
7	Cou	iplage des caméras	33
•	71	Influence de Z sur Ry	33
	7.2	Influence de Z sur Ry	35
	73	Influence de Ry sur Z	36
	7.0	Récapitulatif du couplage des caméras	37
	1.1		01
8	\mathbf{Log}	iciel	39
	8.1	Structure du logiciel	40
	8.2	Corrections dans la partie C++	42
	8.3	Fonctionnement de l'interface utilisateur	44
9	Vali	idation du système	47
	9.1	Position initiale du système	48
	9.2	Mesure du centrage	49
	-	9.2.1 Résolution du centrage	54
	9.3	Focus	55
		9.3.1 Résolution du Focus	59
	9.4	Tip-tilt	60
		9.4.1 Résolution des Tip-tilts	65
	9.5	Comparaison entre les résultats obtenus et les valeurs recherchées	66
-	Б		~
10	Evo	olutions futures	67 67
	10.1		67
	10.0	10.1.1 Interface plus complet	67
	10.2	Correction de l'erreur systèmatique	67
	10.3	Gravage de nouvelles mires	68
	10.4	Cross coupling	68
	10.5	Lecture de la rotation en Z	68
11	Con	nclusion	69
٨	Mad	tárial antiqua	т
A			л П
	A.1	Objectif MI H 10y	
	л.2 Л 2	Objectif M3520	III IV
	л.э Л 1	Objectil 1415520	IV V
	л.4	NIIIOII	v
\mathbf{B}	Con	aception mécanique	\mathbf{II}
	B.1	Matériels commandés	VIII
	B.2	Pièces usinées	Х

Table des figures

$1.1 \\ 1.2 \\ 1.3$	Illustration de l'hexapode utilisé par l'ESO	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$
$2.1 \\ 2.2 \\ 2.3$	Hexapode réalisé par le CSEM	6 6 7
3.1 3.2 3.3 3.4	Principe d'une méthode d'étalonnage	9 11 11
$3.5 \\ 3.6$	série de Fourier du premier ordre	13 14 15
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$	Etude d'une solution à trépied en profilé	 18 19 20 21 21 22 23 23 24 24
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \end{array}$	Caméra utilisée	27 27 28 29 30 31 32
7.1 7.2 7.3 7.4	Influence du focus sur la mesure de Ry	33 34 35 36

TABLE DES FIGURES

8.1 8.2 8.3 8.4 8.5	Interface graphique du programme existant	39 41 42 43 44
8.6	Interface Paramètres.	45
9.1 9.2	Système prêt pour une mesure	$\frac{48}{49}$
9.3	Erreur sur les mesures du centrage	50
9.4	Erreur après correction sur les mesures du centrage.	52
9.5	Histogramme de l'erreur du centrage	53
9.6	Résolution des mesures de centrage	54
9.7	Résultats des mesures du focus	55
9.8	Erreur sur les mesures du focus	56
9.9	Erreur après correction des mesures du focus.	57
9.10	Histogramme de l'erreur du focus.	58
9.11	Résolution de la mesure du focus	59
9.12	Précision des mesures des tip-tilts	60
9.13	Erreur sur les mesures des tip-tilts	61
9.14	Erreur après correction des mesures des tip-tilts	63
9.15	Histogramme de l'erreur des tip-tilts	64
9.16	Résolution de la mesure des tip-tilts	65

Liste des tableaux

$3.1 \\ 3.2$	Caractéristiques de l'hexapode	10 10
6.1	Matériel optique.	31
7.1	Récapitulatif du couplage des caméras	37
 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 	Définition de la position initiale du système	$\begin{array}{c} 48 \\ 51 \\ 53 \\ 56 \\ 58 \\ 61 \\ 64 \\ 66 \end{array}$
B.1 B.2	Liste des pièces commandées	VIII X

Chapitre 1 Introduction

Une nouvelle méthode de métrologie utilisant la vision à été développée lors d'un travail de Bachelor précédent [1]. Tous les systèmes industriels de haute précision nécessitent un étalonnage régulier afin de garantir des résultats optimums. Comme beaucoup d'instruments d'observation modernes, les télescopes utilisent des mécanismes de haute précision pour l'alignement et l'ajustement des éléments optiques.

Le concept de ce travail de Bachelor est d'utiliser la nouvelle méthode de métrologie par caméra pour étalonner les déplacements du miroir secondaire d'un télescope. Afin de pouvoir valider le système, un prototype a été réalisé permettant de simuler l'application. Le travail présenté porte sur l'étude du banc de test, des éléments optiques, du logiciel ainsi que de tous les facteurs permettant d'améliorer la précision des mesures et de répondre aux critères nécessaires pour l'étalonnage d'un mécanisme de haute précision.

1.1 Objectif du travail

L'objectif principal de ce travail de Bachelor est de développer et de tester un nouveau système de métrologie industrielle utilisant des caméras USB. Ce dispositif permettra de mesurer des déplacements pour des réglages de haute précision. Une des premières applications sera l'étalonnage des hexapodes utilisés en astronomie pour l'ajustement du miroir secondaire dans les télescopes.

 $\label{eq:FIGURE 1.1-Mécanisme de type hexapode permettant le déplacement du miroir secondaire sur le télescope VLTI dans l'observatoire de l'ESO à Paranal au Chili.$

1.2 Contexte

A Paranal, au Chili, L'ESO¹ utilise des mécanismes de type hexapode pour régler la position du miroir secondaire de leurs télescopes. Ces hexapodes ont été calibrés après fabrication à l'aide d'instruments de mesure complexes et coûteux (voir chapitre 2.2). Depuis leur mise en service, aucun étalonnage des actionneurs n'a été réalisé. Après quelques essais de mesure par vision, l'école d'ingénieur d'Yverdon-les-Bains a proposé à l'ESO l'étude d'une solution permettant la calibration des hexapodes. Cette étude est le sujet de ce travail de Bachelor.

Les télescopes de l'ESO pour lesquels le système d'étalonnage est développé sont de type Cassegrain. Ils sont composés de deux miroirs. Le premier est concave parabolique et réfléchit la lumière en un point appelé foyer image. Le deuxième miroir appelé miroir secondaire est hyperboloïdal convexe est renvoie le faisceau convergent vers un oculaire.

FIGURE 1.2 – Principe de fonctionnement du télescope Cassegrain.

Lors d'une nouvelle observation, le télescope est orienté grâce à sa structure. Le vecteur gravité crée alors des erreurs d'alignements entre les miroirs. Ces erreurs sont principalement dues à la déformation du système. Grâce à l'hexapode qui déplace légèrement le miroir secondaire, ces erreurs sont corrigées.

^{1.} European Southern Observatory

Le miroir secondaire peut être déplacé dans cinq degrés de liberté :

FIGURE 1.3 – Définition des axes du miroir.

La rotation autour de l'axe optique est réalisable par l'hexapode mais elle n'apporte aucune correction optique sur le résultat de l'observation.

Chapitre 2 État de l'art

Pour réaliser l'ajustement de la position de la focale du télescope, un hexapode a été développé par le CSEM (centre suisse d'électronique et de microtechnique) à Neuchâtel. Quatre télescopes à Paranal ont été équipés avec ce dispositif.

2.1 Hexapode utilisé

L'hexapode est un manipulateur parallèle capable d'orienter sa base mobile dans six degrés de liberté. Cette architecture a été choisie pour contrôler les déplacements du miroir secondaire sur certains télescopes pour diverses raisons :

- Très grande rigidité et stabilité.
- La limite du volume à disposition.
- Les exigences et la précision de mouvement le long de six degrés de liberté.
- Les conditions environnementales.

L'hexapode est composé de six actuateurs linéaires qui peuvent être déplacés indépendamment les uns des autres. Ces actionneurs sont des vérins réalisés sur mesure, conçus pour avoir une très grande raideur et précision. Ils se déplacent à l'aide d'une vis de mouvement qui a un pas de 1 mm par tour. Cette vis est entraînée par un moteur avec un codeur angulaire.

Ce codeur est un résolveur électrique de type brushless qui est associé à un résolveur numérique pour obtenir une résolution de 12'288 positions par tour.

En plaçant les six actionneurs en parallèle, le déplacement de la focale (déplacement selon Z) est directement obtenu par un déplacement de tous les vérins dans un rapport direct 1 :1, sans l'intervention d'aucune force transversale.

Afin de fournir une mesure de position absolue, un LVDT¹ de type industriel est utilisé pour vérifier la position de chaque actionneur. Un LVDT est un capteur électrique inductif de déplacement linéaire.

La charnière entre la tige du piston et la structure porteuse du miroir est réalisée par une articulation flexible. La rigidité axiale est ainsi garantie et la durée de vie est limitée par la résistance à la fatigue de la pièce. Il n'y a aucun frottement, aucun jeu et aucune lubrification nécessaire.

^{1.} Linear Variable Differential Transformer

FIGURE 2.1 – Hexapode réalisé par le CSEM.

2.2 Méthode d'étalonnage existante

Après sa fabrication, l'hexapode a été étalonné par le CSEM. Trois appareils de mesure ont été nécessaires pour la calibration :

- Un interféromètre mesurant le positionnement en Z du miroir.
- Un autocollimateur mesurant les déplacements angulaires de la surface du miroir.
- Un deuxième autocollimateur équipé d'un coin de cube relevant les déplacements orthogonaux (X et Y).

FIGURE 2.2 – Principe utilisé pour l'étalonnage de l'hexapode lors de sa fabrication.

2.2.1 L'interféromètre

L'interféromètre est un instrument optique qui permet de mesurer une longueur de manière très précise. Il utilise les interférences de plusieurs ondes cohérentes entre elles.

L'interféromètre de Michelson, un des plus répandus, est constitué d'une lame séparatrice qui divise le faisceau en deux. Une partie du faisceau est dirigée vers un miroir fixe, l'autre vers un miroir mobile. Lorsque le miroir mobile se trouve à la même distance que le fixe, le faisceau est inchangé. Par contre lorsqu'il se déplace, le trajet optique n'est plus identique à celui du miroir fixe Ce déplacement entraîne l'apparition d'interférences qui peuvent être soit constructives, soit destructives. Ces interférences sont ensuite converties en un spectre infrarouge classique grâce aux transformées de Fourier. Le déplacement de l'objet peut alors être déterminé.

FIGURE 2.3 – Schéma simplifié de l'interféromètre.

2.2.2 L'autocollimateur

Un autocollimateur est un instrument optique utilisé pour mesurer de petits angles avec une très grande sensibilité. Celui-ci permet de réaliser des mesures en temps réel sur un objet, notamment pour un alignement de précision, la détection de mouvements angulaires et le suivi angulaire sur de longues périodes.

L'autocollimateur projette un faisceau de lumière collimaté. La surface externe observée reflète la totalité ou une partie du faisceau. De retour dans l'appareil, le faisceau est focalisé et détecté par un photodétecteur. L'autocollimateur mesure alors l'écart angulaire entre le faisceau émis et le faisceau réfléchi. L'avantage de ce moyen de mesure et que l'on utilise la lumière pour mesurer les angles. Il n'y a donc aucun contact avec la surface mesurée.

En utilisant un coin de cube, un autocollimateur permet, avec quelques adaptations, de mesurer des déplacements orthogonaux dans le plan.

2.3 Pourquoi développer une nouvelle méthode

La technologie de l'interféromètre et de l'autocollimateur n'a plus besoin de faire ses preuves. Obtenir de meilleurs résultats serait difficile et ce n'est pas le but recherché. Cependant ces appareils sont très onéreux et très exigeants au niveau de leur environnement de travail. Ils sont principalement utilisés en laboratoire. Si la solution des caméras USB permet d'obtenir une précision s'approchant de celle de l'interféromètre et de celle de l'autocollimateur, elle aura l'avantage supplémentaire d'être une technologie de terrain qui s'intègre beaucoup plus facilement à un milieu industriel et à un coût très avantageux.

Chapitre 3 Méthode de mesure

Pour réaliser le calibrage des actionneurs de l'hexapode, celui-ci devra être démonté du télescope puis installé sur un banc d'étalonnage. Trois caméras permettront de mesurer un déplacement de la surface du miroir ou une inclinaison. En comparant la consigne du déplacement fixé par l'opérateur et le déplacement réel du miroir, les actionneurs de l'hexapode pourront être étalonnés.

FIGURE 3.1 – Principe d'une méthode d'étalonnage.

3.1 Précision

Pour réaliser un calibrage correcte de l'hexapode, la précision des mesures lors de l'éta-lonnage est importante.

Les déplacements de l'hexapode ont les caractéristiques suivantes :

	Plage de mesure	$\pm 1.5 \ \mu { m m}$
Focus	Résolution	$\leq 0.6 \ \mu { m m}$
	Précision	$\leq 6 \ \mu { m m}$
	Plage de mesure	$\pm 0.7~\mu{ m m}$
Centrage	Résolution	$\leq 5 \ \mu { m m}$
	Précision	$\leq 20 \ \mu { m m}$
	Plage de mesure	$\pm 300 \ arcsec$
Tip-tilt	Résolution	$\leq 5 \ arcsec$
	Précision	$\leq 20 \ arcsec$

TABLE 3.1 – Caractéristiques de l'hexapode.

Les plages de mesure et les résolutions recherchées pour le système d'étalonnage sont identiques à celles de l'hexapode. Cependant, pour assurer une calibration correcte, la précision des mesures devrait être au moins de l'ordre de grandeur de la moitié de celle de l'hexapode, soit :

Mesure	Précision des mesures
Focus	$\leq 3~\mu{ m m}$
Centrage	$\leq 10 \ \mu { m m}$
Focus	$\leq 10 \text{ arcsec}$

TABLE 3.2 – Précision des mesures.

Le programme permettant de mesurer les déplacements d'un plan à l'aide d'une caméra a été réalisé par Fabien Chevalley en 2009 dans le cadre de son travail de Bachelor [1]. Le code qu'il a écrit n'avait encore jamais été utilisé pour une application concrète, mais son développement a mis en évidence deux points clés : l'étude de la mire observée par la caméra et le traitement de l'image.

3.2 Choix de la mire

Le programme de F. Chevalley peut réaliser des mesures absolues. La mire, qui recouvre la surface observée par la caméra, est un code qui positionne dans le plan. Les différents motifs circulaires qui composent la mire permettent d'avoir deux bits pour encoder la position, soit un bit pour l'abscisse et un pour l'ordonnée.

FIGURE 3.2 – Codage des motifs de la mire.

Construire une mire comportant une suite de bits connue et non redondante sur une fenêtre de longueur définie permet de se positionner par rapport à l'origine du référentiel.

FIGURE 3.3 – Décodage d'une portion de mire.

Le positionnement absolu ne va pas être utilisé lors de l'étalonnage de l'hexapode. Seules des mesures relatives seront réalisées. Cependant, la mire aux motifs circulaires garantit une précision élevée. Elle permet également d'optimiser le traitement et d'obtenir un temps de calcul très rapide. La mire possède 127 motifs par côté et nécessite au minimum huit motifs pour son décodage. Le pas, distance entre chaque motif, représente l'échelle de la mesure. De plus, pour faire face à des perturbations locales, le code des abscisses se répète sur chaque ligne de l'image, de même pour le code des ordonnées qui se répète sur chaque colonne. Le positionnement obtenu par le décodage de la mire n'est pas d'une grande précision. Il se situe au motif près (valeur du pas). Le positionnement précis ne dépend pas du codage mais du traitement de l'image. Les mires utilisées sur le banc de test ont toutes un pas de 2 mm. Il n'est pas nécessaire de réduire ce pas tant que la mire reste imprimée sur un support papier. L'impression d'une mire microscopique sera peut-être une évolution future.

3.3 Traitement de l'image

Le traitement se fait sur un carré de huit motifs de côté. Si l'image en compte plus, le programme se concentre sur le carré de huit par huit au centre de la mire. Les problèmes causés par la distorsion et par la disparité lumineuse peuvent ainsi être évités. L'algorithme fonctionne comme suit : Initialisation, Localisation, Décodage et Position fine.

3.3.1 Initialisation

La phase d'initialisation à lieu une fois au démarrage du programme ou lors d'un reset. Elle calcule avec précision le pas entre les motifs ainsi que leur diamètre en pixels. Ce sont les deux paramètres propres à la géométrie de la mire. Cette étape permet d'éviter des imprécisions qui pourraient apparaître lorsque le calcul se fait à chaque nouvelle image. En effet, si ce paramètre varie, la continuité de la mesure est à remettre en cause. En introduisant dans le système la valeur en millimètres du pas de la mire utilisée, le programme peut alors convertir les pixels en millimètres.

3.3.2 Localisation

La localisation peut se réaliser de deux manières différentes, soit par la méthode des extremas, soit par la méthode des séries de Fourier.

- La méthode des extremas est la plus robuste mais elle ne permet pas une éventuelle rotation de la mire. Cette méthode consiste à réaliser une projection horizontale et verticale du niveau de gris de l'image. En combinant les valeurs des deux projections, il est possible de retrouver les coordonnées de chaque motif.
- La deuxième méthode est la localisation par séries de Fourier. Une fois la projection horizontale et verticale du niveau de gris des pixels réalisée, une approximation par série de Fourier du premier ordre pour chaque projection est réalisée. On obtient deux signaux sinusoïdaux. Le travail de recherche des extremums ne se fait plus sur l'image mais sur deux signaux unidimensionnels. Cette algorithme peut faire face à de grosses perturbations.

FIGURE 3.4 – Projection des lignes et colonnes en niveau de gris et approximation par série de Fourier du premier ordre.

Lors de l'observation des déplacements de l'hexapode dans les cinq degrés de liberté, les mires sont souvent soumises à de légères rotations. La méthode de localisation par séries de Fourier sera donc la solution retenue pour cette application.

3.3.3 Décodage

La lecture des projections est certainement la plus simple des techniques de décodage. Elle travaille sur les signaux unidimensionnels. Pour cette technique, le contraste de l'image doit être de bonne qualité. Le décodage consiste à faire un seuillage afin d'obtenir un signal tout ou rien. Ce signal correspond au code de la portion de mire observée.

La deuxième méthode est le décodage par niveau de gris. Les quatre symboles utilisés ont des niveaux de gris bien différents, ce qui permet une classification aisée de chaque symbole.

3.3.4 Position fine

La localisation fine consiste en une mesure de position très précise. Elle permet de connaître la position de l'image entre deux motifs. Cette affinage se fait par une approximation par série de Fourier du premier ordre.

3.4 Mesure d'une rotation

La méthode de mesure pour des déplacements axiaux peut également être utilisée pour des mesures de rotation. La caméra utilisée à cet effet observe l'image de la mire créée par le miroir. Le miroir est solidaire à la surface mobile. Lorsqu'une rotation a lieu, la caméra observe un déplacement de la mire. En connaissant la géométrie du système et la valeur du déplacement observé par la caméra, la rotation peut être déterminée.

FIGURE 3.5 – Schéma explicatif de la méthode de mesure des tip-tilts.

Avec une seule caméra, la rotation autour de X et de Y peut être mesurée.

3.5 Prise en main de la méthode

Avant le développement d'un prototype, différents essais ont été réalisés afin de s'assurer que tous les paramètres importants soient considérés pour le développement du banc de test. Ces essais ont également permis de déterminer l'orientation et le positionnement idéal de chaque caméra.

Grâce à ces premiers essais, différents points ont pu être mis en évidence :

- La version du programme existante pour la lecture de position n'était pas exploitable pour des mesures en continu. Beaucoup d'erreurs causaient l'arrêt du programme. Parfois les valeurs obtenues étaient totalement incohérentes ou juste amplifiées d'un offset qui décalait le résultat. Ces problèmes seront corrigés par la suite du travail.
- La stabilité de la structure portant les caméras est indispensable pour garantir des mesures précises.
- La caméra pour les mesures des tip-tilts doit être parallèle à la mire observée au travers du miroir. Une déformation des proportions de l'image est ainsi évitée.
- L'éclairage des mires influence énormément la qualité des résultats.

FIGURE 3.6 – Premiers essais de lecture de déplacement.

Chapitre 4

Structure du prototype

Dans le but de pouvoir utiliser les caméras pour étalonner les déplacements d'un hexapode dans ses six degrés de liberté, un banc de test a été développé. N'ayant pas l'hexapode à disposition pour réaliser des tests, celui-ci est remplacé par un dispositif composé de plusieurs systèmes empilés, permettant de se déplacer dans les six degrés de liberté. La taille et la masse de ce dispositif sont similaires au véritable hexapode.

La rotation en Z est possible dans le but de vérifier d'éventuelles perturbations sur les mesures. Si le dispositif de mesure est concluant, l'hexapode pourra être monté à la place de l'adaptation, sur la même structure.

4.1 Caractéristiques de la structure

La structure à développer doit répondre à certains critères pour garantir le minimum de perturbations sur les mesures :

- Lors de la mesure, l'hexapode doit être dans une position similaire à celle de son montage sur le télescope.
- La rigidité du système doit être importante de manière à réduire l'effet du poids des pièces sur les mesures.
- Les caméras et les mires doivent être solidaires à la structure et ne doivent pas pouvoir bouger entre deux mesures.
- La fixation d'éléments sur la structure comme des caméras ou spots d'éclairage doit pouvoir être facilement modifiable.

4.2 Etude de conception

Différentes solutions ont été étudiées avant de réaliser le banc de test définitif.

4.2.1 Trépied en profilé

La première solution est l'utilisation d'une architecture en profilé. L'hexapode est maintenu au centre d'une structure composée de trois pieds afin d'éviter les problèmes d'instabilité. Les profilés sont très apprécié car ils offrent l'avantage d'être très modulables et le système est facilement montable et démontable.

FIGURE 4.1 – Etude d'une solution à trépied en profilé.

Cette solution ne permet pas l'inclinaison du mécanisme. Étant donné que l'hexapode doit pouvoir être orienté dans une position similaire à celle nécessaire pour une observation, cette solution a été abandonnée.

4.2.2 Cadre en profilé

En gardant le choix de la structure en profilé, cette nouvelle construction permettrait l'inclinaison de l'hexapode.

FIGURE 4.2 – Etude d'une solution à cadre en profilé.

Avec un montage en profilé, il est compliqué de garantir des équerrages et parallélismes précis. Il est également très difficile de repositionner tous les éléments dans leur position initiale après un démontage. En fixant les éléments de mesures sur des travers reliées entre elles par des fixations peut introduire de multiples sources d'erreur dans la géométrie du système.

C'est pour ces divers raisons qu'une solution plus massive a été étudiée.

4.2.3 Plateau tournant

Ce banc de test est composé d'une pièce principale sur laquelle tous les éléments viennent se fixer ce qui rend les composants solidaires les uns des autres. On rigidifie ainsi la structure et on garantit des positions fixes pour chaque composant, même après plusieurs démontages.

La nouvelle structure est composée d'un disque en aluminium qui peut pivoter autour de son axe afin de permettre d'approcher la position d'observation de l'hexapode. Tous les éléments sont fixés sur ce disque et tournent ensemble. Une équerre massive sert de socle et stabilise le système.

FIGURE 4.3 – Etude d'une solution à plateau tournant.

Cette solution paraît être une bonne solution pour notre application. Il est cependant important de bien dimensionner les pièces principales comme le plateau afin d'éviter une trop grande déformation de celui-ci.

4.3 Développement de la structure finale

Une fois le choix de la structure établie, le dimensionnement des pièces et le choix des matériaux sont deux facteurs essentiels si l'on veut éviter des déformations.

Deux développements ont été réalisés :

- Un développement pour fixer l'hexapode sur le plateau tournant.
- Un développement pour fixer une adaptation permettant la simulation de l'hexapode.

L'hexapode sera maintenu par un système de brides. Une bride principale sera fixée sur le plateau et l'hexapode sera logé à l'intérieur de cette bride. Deux brides sont prévues pour bloquer le système en position. Cette solution garantit un positionnement de l'hexapode toujours identique et évite toute rotation ou mauvais alignement. De plus, l'hexapode est maintenu sur toute sa longueur afin de rigidifier le tout. Il est fixé par ses côtés de la même manière qu'il est monté sur le télescope.

FIGURE 4.4 – Fixation de l'hexapode par bridage.

Étant donné que nous n'avons pas d'hexapode disponible, une solution permettant de le simuler a été mise au point. L'empilage d'une petite table croisée sur un instrument permettant la rotation autour de X et de Y et d'un troisième outil permettant la rotation en Z offre la possibilité de simuler cinq degrés de liberté. Le sixième degré, le déplacement en Z, s'effectue grâce à une vis d'appui qui fait monter tout le système en s'appuyant sur le bord du disque.

FIGURE 4.5 – Empilage pour simuler tous les degrés de liberté de l'hexapode.

Voici la solution finale développée avant de lancer la production des pièces :

FIGURE 4.6 – Structure finale du prototype.

Un doigt indexeur permet de bloquer la rotation du plateau tous les 30° .

4.3.1 Choix des matériaux

Le choix des matériaux est une étape à ne pas négliger lors de la conception d'une structure qui doit permettre de réaliser des mesures avec une précision proche du micron. Chaque pièce doit être la plus rigide possible, sans pour autant surdimensionner tous les éléments et en limitant les coûts.

Équerre de base :

L'équerre est composée de quatre pièces, toutes en acier. Étant donné que l'équerre sert de base pour le système, la masse de celle-ci assure la stabilité de tout le banc de test. Les pièces ont été fabriquées à l'école puis elles ont été noircies par réaction chimique pour les protéger de la corrosion.

Plateau tournant :

Le plateau est en aluminium. Il a été découpé au jet d'eau puis usiné à l'atelier de l'école. Bien que l'aluminium soit moins rigide que l'acier, en augmentant l'épaisseur du plateau, on obtient une rigidité suffisante pour une masse bien inférieure à un plateau en acier.

Axe pour le pivotement :

L'axe principal est en laiton. En choisissant cette matière, il n'est pas nécessaire d'ajouter un palier lisse dans le montant de l'équerre. Le coefficient de frottement laiton-acier est de 0.18 sans graisse. Ce coefficient est tout à fait suffisant pour l'application en question. Un palier lisse aurait pu s'écraser sur du long terme et occasionner un jeu. En ajustant le palier en laiton directement dans l'alésage du montant de l'équerre, le jeu est minimal.
4.3.2 Etude de déformation

A l'aide de Solidworks, une étude du comportement du plateau sous charge est effectué. Une estimation de la déformée permet de valider la rigidité du système :

FIGURE 4.7 – Etude de déformation pour une force appliquée sur le plateau de 10 N.

Une force de environ 100 N est appliquée pour simuler le poids de l'hexapode (environ 9 kg).

L'intensité du module du déplacement maximal est représentée sur le graphique. La flèche maximum du plateau lorsque celui-ci est en position verticale est de environ 0.04 mm. Lorsque le plateau tourne de 45°, la déformation ne change pas de manière significative. Le résultat d'une mesure dans une position inclinée ne sera donc pas influencé par l'erreur causée par la déformation du plateau.

FIGURE 4.8 – Solution définitive sur SolidWorks.

4.4 Photos du banc de test

FIGURE 4.9 – Photo du montage dans une position de mesure.

FIGURE 4.10 – Photo du montage de dos.

Chapitre 5 Éclairage

Un facteur important qui influence énormément les mesures est l'éclairage du pattern. Lors d'une mesure de position, le logiciel calcule le niveau de gris ligne par ligne et colonne par colonne. Lorsque la luminosité de la mire est modifiée, les niveaux de gris sont modifiés et les mesures sont perturbées.

5.1 Choix des lampes

Une lampe alimentée en alternatif pulse à 50 Hz et perturbe la lecture de l'image par la caméra. Un éclairage en continu est donc nécessaire. Les lampes LED¹ répondent à ce besoin de stabilité, c'est pourquoi elles ont été choisies. Trois spots LED ont été fixés sur la structure. La qualité du redresseur de tension de l'alimentation a également son influence. Les spots achetés étaient équipés de transformateurs-redresseurs de qualité médiocre. Les lampes ont alors été alimentées à l'aide d'une alimentation stabilisée de laboratoire. La stabilité des mesures a pu ainsi être améliorée.

5.2 Utilisation d'un filtre

Étant donné que les mesures ne pourront pas toujours être effectuées dans un milieu totalement obscure, des filtres sont placés devant les objectifs afin d'éliminer un maximum des perturbations extérieures. Ces filtres de couleur verte sont choisis car ce sont des filtres courants et peu coûteux qui possèdent une bande passante étroite.

^{1.} Light-Emitting Diode

5.3 Impression de la mire

Dans un premier temps, les mires ont été imprimées sur du papier ordinaire. Par la suite, il a été remarqué qu'en augmentant la qualité de l'impression et du papier, la précision des mesures augmente.

Différents papiers ont été testés, mais les mesures optimales ont été réalisées avec du papier photo satiné.

5.4 Éclairage idéal de la mire

Les meilleurs résultats sont obtenus lorsque le contraste entre le noir et le blanc est le plus élevé. Cependant, si les patterns sont trop lumineux, la couleur noire est atténuée, l'image obtenue perd alors de sa qualité.

Il est donc important de trouver l'éclairage judicieux :

Exemple d'une mire éclairée de manière non uniforme.

Exemple d'une mire n'étant pas suffisamment éclairée.

Exemple d'une mire éclairée de manière optimale.

Chapitre 6

Optique

Lorsque les distances géométriques de la structure mécanique sont définies, les différents éléments optiques sont dimensionnés.

Afin d'observer les mouvements de l'hexapode dans cinq degrés de liberté, trois caméras sont nécessaires.

6.1 Choix des caméras

Les caméras utilisées pour réaliser les mesures sont des caméras monochromes de chez Mightex à capteur CMOS (complementary metal oxide semi-conducteur). Ces caméras sont également celles utilisées par F. Chevalley lors du développement de sa méthode.

FIGURE 6.1 – Caméra utilisée.

L'échauffement du capteur CMOS des caméras crée une petite erreur qui se stabilise avec le temps. Cette erreur n'influencera pas les mesures étant donné que celles-ci se font en un temps relativement court.

FIGURE 6.2 – Échauffement des capteurs CMOS.

6.2 Géométrie du système

Les distances entre les mires et les objectifs doivent être fixées pour déterminer la focale et le grandissement nécessaire des objectifs.

FIGURE 6.3 – Distance entre mires et caméras.

Pour avoir la distance entre la mire et le capteur CMOS, il faut ajouter la longueur des objectifs de 116 mm aux valeurs ci-dessus.

6.3 Dimensionnement des objectifs

En connaissant la résolution du capteur de la caméra et la taille d'un pixel, la taille de l'image formée sur le capteur CMOS peut être calculée :

- Résolution du capteur : 752 · 480 pixels
- Taille d'un pixel : $6.0 \cdot 6.0 \ [\mu m]$

Calcul de la taille de l'image formée sur le capteur CMOS :

$$752 \cdot 6 = 4.512 \ [mm] \tag{6.3.1}$$

$$480 \cdot 6 = 2.880 \ [mm] \tag{6.3.2}$$

L'algorithme utilisé pour le calcul de positionnement de la mire a besoin d'un carré de huit motifs par huit motifs minimum. Étant donné que la zone de huit par huit est prise au centre de la zone, en augmentant la surface de la mire observée, les problèmes de distorsion et de disparité lumineuse sont atténués. La taille de la mire minimum est fixée à un carré de 20 mm par 20.

FIGURE 6.4 – Taille de la mire minimum.

En connaissant la taille de l'objet et la taille de l'image, le grandissement nécessaire peut être calculé :

$$G = -\frac{A'B'}{AB} = -\frac{p'}{p} \ [-] \tag{6.3.3}$$

Le grandissement doit être calculé pour le plus petit côté du capteur afin de s'assurer que l'on observe au minimum dix symboles. Pour le plus grand côté, quelques symboles supplémentaires seront visibles étant donné que l'image est rectangulaire.

En utilisant alors la valeur obtenue en 6.3.2, l'équation 6.3.3 est calculée :

$$G = -\frac{2.880}{20} = -0.144 \ [-] \tag{6.3.4}$$

Ce résultat correspond au grandissement minimal nécessaire.

6.3.1 Objectif vertical

Connaissant la distance entre la mire et la caméra ainsi que le grandissement, la focale est déterminée.

Le système d'équation ci-dessous permet de déterminer p et p' :

$$\begin{cases} p + p' = 320 + 116 \\ -\frac{p'}{p} = -0.144 \end{cases}$$
(6.3.5)

$$\begin{cases} p = 381.1 \ [mm] \\ p' = 54.9 \ [mm] \end{cases}$$
(6.3.6)

L'équation de Gauss pour les lentilles minces permet d'obtenir la focale du système :

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'} \to f = \frac{p \cdot p'}{p + p'}$$
(6.3.7)

En utilisant les valeurs calculées en 6.3.6 :

$$f = \frac{381.1 \cdot 54.9}{381.1 + 54.9} = 48 \ [mm] \tag{6.3.8}$$

Connaissant la focale, l'objectif peut être choisi. L'objectif MLH-10x de chez Computar a les caractéristiques recherchées.

Par la suite, une bague d'adaptation de 5 mm va être ajoutée entre l'objectif et la caméra. Cette bague diminue la distance p de 5 mm et augmente p' de la même valeur. Le grandissement est ainsi augmenté et une plus grande surface de mire est observée. Les résultats ainsi obtenus sont de meilleure qualité.

FIGURE 6.5 – Objectif MLH-10x monté sur la caméra.

6.3.2 Objectif à 45°

La même démarche que pour l'object if vertical est utilisée pour déterminer l'object if à utiliser pour la caméra à $45^\circ.$

En connaissant la distance caméra-miroir, miroir-mire et le grandissement voulu :

$$\begin{cases} p + p' = 190 + 195 + 116 \\ -\frac{p'}{p} = -0.144 \end{cases}$$
(6.3.9)

$$\begin{cases} p = 437.9 \ [mm] \\ p' = 63.1 \ [mm] \end{cases}$$
(6.3.10)

En utilisant l'équation de Gauss 6.3.7 pour déterminer la focale :

$$f = \frac{437.9 \cdot 63.1}{437.9 + 63.1} = 55.1 \ [mm] \tag{6.3.11}$$

L'objectif MLH-10x peut également être utilisé pour cette caméra.

6.3.3 Objectif horizontal

Même démarche pour la caméra horizontale :

$$\begin{cases} p+p' = 250 + 116 \\ -\frac{p'}{p} = -0.144 \end{cases}$$
(6.3.12)

$$\begin{cases} p = 319.9 \ [mm] \\ p' = 46.1 \ [mm] \end{cases}$$
(6.3.13)

A l'aide de l'équation de Gauss (6.3.7), on trouve la focale nécessaire pour cet objectif :

$$f = \frac{319.9 \cdot 46.1}{319.9 + 46.1} = 40.3 \ [mm] \tag{6.3.14}$$

L'objectif utilisé pour les deux autres caméras ne peut pas être utilisé pour celle-ci. L'objectif M3520-MPV utilisé avec une bague d'adaptation de 5 mm permet d'obtenir une surface de mire correcte.

FIGURE 6.6 – Objectif M3520-MPV monté sur la caméra.

6.4 Choix du miroir

Le miroir a un état de surface de $\lambda/8$ à 633 nm. Il est recouvert d'un revêtement en argent pour garantir une bonne réflectance dans le domaine du visible. Il a été commandé chez Thorlabs.

6.5 Références du matériel optique

Pièce	Modèle	Fournisseur	QTE	Ref. Annexe
Caméra	BCN-BG04-U	Mightex	3	A.1
Objectif vertical / Objectif 45°	MLH-10x	Computar	1	A.2
Objectif horizontal	M3520-MPV	Computar	2	A.3
Miroir	PFSQ20-03-P01	ThorLabs	1	A.4

TABLE 6.1 – Matériel optique.

6.6 Calcul des Tip-Tilts

La caméra fixée à 45° permet de déterminer les rotations du miroir autour de X et de Y. Lorsque le miroir est incliné, un déplacement linéaire de la mire est mesuré par la caméra. En connaissant la relation trigonométrique qui lie ce déplacement à l'inclinaison, la valeur de la rotation peut être obtenue :

FIGURE 6.7 – Calcul des tip-tilts.

Lorsque le miroir s'incline d'un angle β par rapport à sa position initiale, l'ange réfléchi est dévié de $2\beta.$

En connaissant la distance entre le miroir et la mire lorsque le miroir est horizontal (distance d sur le schéma ci-dessus) et en mesurant la valeur de x, l'angle β peut être calculé :

$$\tan\left[2\beta\right] = \frac{x}{d} \qquad \rightarrow \qquad \beta = \frac{1}{2} \cdot \arctan\left[\frac{x}{d}\right]$$
(6.6.1)

Ce développement est valable pour une rotation autour de Y, mais également autour de X. Pour transformer la valeur de l'angle obtenue en radian, en seconde d'arc, une simple multiplication est effectuée dans le code du programme :

$$1 \ [radian] = \frac{180}{\pi} \ [degree] \ \to \ 3600 \cdot \frac{180}{\pi} = \frac{648000}{\pi} [arcsec] \tag{6.6.2}$$

La valeur de la constante d dans l'équation 6.6.1 dépend de la géométrie du système. De plus, cette valeur a été approchée de manière expérimentale afin de rapprocher les courbes mesurées à la courbe théorique. Elle a été fixée à 195 mm.

Chapitre 7 Couplage des caméras

Lorsqu'un déplacement du miroir est mesuré, les mouvements effectués par l'hexapode dans les autres degrés de liberté ne doivent pas influencer le résultat. Chaque mesure doit donc tenir compte des autres déplacements afin de corriger l'effet de ceux-ci sur le résultat. Ces considérations permettent par exemple de varier le focus sans que la mesure de rotation soit modifiée. Pour réaliser ces couplages, il est nécessaire de déterminer l'effet de chaque déplacement sur les autres mesures.

7.1 Influence de Z sur Ry

La mesure de la rotation autour de Y est très influencée par un déplacement selon Z. Étant donné que la surface du miroir observée par la caméra n'est pas alignée sur le centre de rotation, Z fait varier Ry de deux manières différentes :

• Lorsque le focus est déplacé, une erreur sur la mesure de rotation apparaît.

FIGURE 7.1 – Influence du focus sur la mesure de Ry.

La caméra observe la mire avec un angle fixe de 45° par rapport à l'horizontal. Lors d'un décalage du focus, un triangle rectangle isocèle est formé. Les cathètes du triangle valent le déplacement en Z. L'hypoténuse qui correspond à la correction à apporter sur la mesure du déplacement peut se calculer :

$$Correction = \sqrt{2} \cdot Z$$

• Lors d'une rotation en Ry un décalage en Z apparaît, causé par le décentrage du miroir par rapport à l'axe de rotation du plan.

FIGURE 7.2 – Influence du décentrage du miroir.

Ce déplacement peut être exprimé en fonction de l'angle β :

$$\beta = \tan\left[\frac{z}{d_2 - z}\right] \qquad \rightarrow \qquad z = \frac{\arctan[\beta] \cdot d_2}{1 + \arctan[\beta]}$$

En tenant compte de la taille des angles, inférieures à 1/6 de degré, l'approximation de la tangente peut être faite de la manière suivante :

$$z = \frac{\beta \cdot d_2}{1+\beta} \tag{7.1.1}$$

Correction à apporter à la valeur lue par le programme :

$$x_{tot} = x + \sqrt{2} \cdot z$$

En tenant compte du déplacement du focus et de l'erreur causée par la rotation :

$$z_{tot} = z + \frac{\beta \cdot d_2}{\beta + 1} \tag{7.1.2}$$

L'équation des tip-tilts 6.6.1 peut se corriger ainsi :

$$\beta = \frac{1}{2} \cdot \arctan\left[\frac{x + \sqrt{2} \cdot \left[z + \frac{\beta \cdot d_2}{\beta + 1}\right]}{d}\right]$$
(7.1.3)

Après une mise en évidence de la valeur β , l'équation finale à implanter dans le code du programme est la suivante :

$$\beta = \frac{x - 2d_1 + \sqrt{2} \cdot (d_2 + z)}{4 \cdot d_1} + \frac{\sqrt{x^2 + 4d_1(d_1 - d_2\sqrt{2} + x + z\sqrt{2}) + 2d_2(d_2 + x\sqrt{2} + 2z) + 2z(x\sqrt{2} + z)}}{4 \cdot d_1}$$

7.2 Influence de Z sur Rx

L'influence de Z sur la mesure de Rx n'est pas identique à celle sur Ry. La surface observée par la caméra est décalée du centre de seulement quelques millimètres. L'erreur créée lors d'une rotation par le décentrage peut donc être négligée.

Le focus n'influence pas non plus le résultat mesuré :

FIGURE 7.3 – Influence du focus sur la mesure de Rx.

Sur la figure 7.3, quelque soit la valeur de Z, la distance X sur la mire ne change pas. Il n'y a donc pas de correction à apporter sur le calcul du tip-tilt autour de X.

D'une manière générale, les tip-tilts en X et en Y font pivoter l'image observée par la caméra horizontale. En tenant compte que la plage d'utilisation du système et de ± 300 arcsec, la rotation n'est pas visible et n'influence pas les mesures.

7.3 Influence de Ry sur Z

La rotation autour de Y influence également la mesure de position en Z :

FIGURE 7.4 – Influence de Ry sur la mesure du focus.

Une approximation est réalisée en admettant que la mesure est déviée de :

$$x = d_3 \cdot \tan(\beta)$$

Le calcul du focus à intégrer dans le logiciel correspond à :

$$Z = Z + d_3 \cdot \tan(\beta)$$

7.4 Récapitulatif du couplage des caméras

Les perturbations des déplacements sur les mesures ne s'arrêtent pas aux quelques-unes définies précédemment. La liste ci-dessous résume tous les déplacements et leurs influences possibles.

Déplacement selon :	Mesure de :	Influence :
X	у	NON
X	Z	NON
X	Rx	NON
X	Ry	OUI si $Ry \neq 0$
У	х	NON
У	Z	NON
У	Rx	OUI si $Rx \neq 0$
У	Ry	NON
Z	х	NON
Z	у	NON
Z	Rx	NON
Z	Ry	OUI
Rx	х	NON
Rx	у	OUI, faible
Rx	Z	NON
Rx	Ry	OUI, faible
Ry	х	NON
Ry	у	NON
Ry	Z	OUI
Ry	Rx	OUI, faible

TABLE 7.1 – Récapitulatif du couplage des caméras.

Beaucoup d'effets de couplage sont négligeables étant donné les faibles courses parcourues dans chaque direction.

Pour une première approche du problème, seules les influences les plus pondérantes sont prises en compte.

De nombreuses améliorations pourraient être envisageables sur la base de cette liste.

Une première correction qui permettrait de supprimer une partie de ces effets de couplage consisterait à positionner le miroir sur le centre de rotation de la surface. Ceci simplifierait également certains calculs.

Chapitre 8 Logiciel

Le logiciel utilisé pour la lecture de positionnement à l'aide d'une caméra existait déjà. Il avait été le sujet du travail de diplôme de F. Chevalley [1]. Son code est divisé en deux parties : une partie algorithme écrite en C++ et une partie en C# qui comprend toutes les fonctions effectuant l'acquisition d'images et la gestion de l'interface.

FIGURE 8.1 – Interface graphique du programme existant.

Afin de pouvoir utiliser ce code pour la lecture de trois caméras simultanément, la partie en C# a dû être modifiée alors que la partie en C++ a pu être reprise avec quelques corrections seulement.

Un problème rencontré lors des premiers essais était la surcharge du processeur de l'ordinateur causée par le programme. Le programme prévu pour une caméra utilisait déjà 63% du processeur. Lorsque le nombre de caméras a été multiplié par trois, l'ordinateur saturait. Il a fallu optimiser la partie C# afin d'alléger le programme. Une classe Camera qui n'existait pas auparavant a été définie afin de simplifier le code. Après modifications, le programme est resté très gourmand en ressources mais il fonctionne sur un ordinateur portable récent. Il utilise environ 65% d'un processeur de 2.8 GHz.

8.1 Structure du logiciel

Le nouveau logiciel est structuré de la manière suivante :

- Tant que la case "refresh processing" n'est pas activée la partie en C# fonctionne comme suit :
 - Au démarrage du programme, les informations des trois caméras sont lues et le programme les affiche.
 - Le positionnement des trois caméras est automatiquement défini en fonction du port USB sur lequel elles sont connectées.
 - L'image acquise par chaque caméra est alors affichée en boucle.
- Dès que la case "refresh processing" est activée, la partie en C++ est appelée :
 - Pour chaque caméra, le premier tableau de pixels après l'activation du processing passe dans une phase d'initialisation ou le pas et le rayon de la mire sont calculés.
 - Une fois l'initialisation terminée, chaque caméra transmet la nouvelle image acquise à la partie en C++. Cette image est en réalité un tableau qui contient les niveaux de gris de chaque pixel. A chaque nouvelle capture d'images, un nouveau tableau est transmis.
 - Pour chaque tableau de pixels, la somme du niveau de gris pour chaque ligne et pour chaque colonne est calculée.
 - La transformée de Fourier du signal obtenu par addition des niveaux de gris est calculée.
 - Le déphasage entre le signal précédent et le nouveau signal permet de déterminer le décalage de l'image.
 - La valeur du décalage obtenue est retournée à la partie en C# qui l'affiche sur l'interface.
 - Le système tourne dans une boucle infinie tant que le programme n'est pas arrêté.

Le code peut être représenté de la manière suivante :

FIGURE 8.2 – Structure du nouveau programme.

La liaison entre le code en C# et le code en C++ est réalisée grâce à des Dll¹.

^{1.} Dynamic link library

8.2 Corrections dans la partie C++

Deux corrections principales ont été réalisées dans la partie C++.

- Premièrement, lorsque l'éclairage variait sur la mire, le programme cessait de fonctionner et une erreur d'allocation de mémoire apparaissait. Ce dépassement se faisait lors de l'encodage de la mire. Le problème venait d'une inversion de deux indices dans une boucle for.
- Lorsque le grandissement de l'objectif était modifié, la lecture de position retournait une valeur incohérente. En observant la courbe du niveau de gris et son approximation par série de Fourier, on pouvait remarquer que ces deux signaux n'avaient pas la même fréquence.

FIGURE 8.3 – Erreur lors de la transformée de Fourier.

Dans le cas de la mire, le pas correspond à la période du signal et la fréquence dépend donc de l'inverse du pas. Elle est calculée comme suit :

$$f = \frac{1}{T} \equiv \frac{1}{Pas} \qquad [Hz]$$

Une erreur se trouvait dans le calcul du pas de la mire. Le pas est calculé à l'aide d'une autocorrélation sur une projection du signal. L'autocorrélation permet d'obtenir le pitch du signal qui correspond au premier maxima régional. Ce pitch est également la période du signal et donc son pas. Dans l'ancienne version du code, le pitch était défini où se trouvait la valeur maximale de la courbe alors qu'en réalité c'est le premier maxima régional, même si celui-ci n'est pas le maximum du signal.

FIGURE 8.4 – Autocorrelation d'une projection avec un pas de 45 pixels.

En corrigeant ce paramètre, la fréquence de la série de Fourier correspondait à celle de la projection du niveau de gris.

Grâce à cette modification, les mesures sont maintenant insensibles à une variation du grandissement de l'image.

A l'aide des zooms sur les objectifs, l'image peut être adaptée de manière à obtenir une taille optimale pour la réalisation des mesures sans que le logiciel ne se mette en erreur.

8.3 Fonctionnement de l'interface utilisateur

La nouvelle interface développée permet d'observer les trois images fournies par les caméras.

		000	Caméra Centrage X-Y BCE-BC04-US	Caméra Focus Z BCE-BG04-U	Caméra Tip-tilt Rx-Ry 805-8004-0
			13-090318-006 Parameters	13-100224-007 Parameters	13-100224-009 Parameters
		OOC I	X Axis [mm] : 0.7451 Y Axis [mm] : -0.489	57 17	Release Comera Reset Offset
			Z Axis (mm]: 1.195 X rotation [arcsec]: Y rotation [arcsec]:	12 36 27232 -228.8848	Acquisition range 1 🔆
\$0000000000000000000000000000000000000		ÖÖC			♂ Refresh display ⊘ Refresh Processing
		000	00000		000000000000000000000000000000000000000
		000			
>000000000		000		00000	000000000000000000000000000000000000000
		000			
	améra entrage X-Y	Camé Focus	ira s Z	Caméra Tip-tilt R	COOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC
	améra entrage X-Y 2E-BG04-US 1-090318-006	Camé Focus BCE-BC 13-1002	sra s Z 304-U 2224-007	Caméra Tip-tilt R BCE-BG04-1 13-100224-1	x-Ry
	améra entrage X-Y 2E-BG04-US 1-090318-006 Parameters	Camé Focus BCE-BC 13-1002	ara s Z S04-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04- 13-100224-	x-Ry J J Jarameters
	améra entrage X-Y 2E-BG04-US H090318-006 Perameters	Camé Focus BCE-BC 13-100	ara s Z 304-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04-1 13-100224-1	x-Ry J Jog Parameters ease Camera
C C C C C C C C C C C C C C C C C C C	améra entrage X-Y SE-BG04-US -090318-006 Perameters (Axis [mm] : 0.74 (Axis [mm] : -0.4	Camé Focus BCE-BC 13-1007	ara s Z 304-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04-1 13-100224-1 F	x-Ry J09 Parameters ease Camera leset Offset
C C C C C C C C C C C C C C C C C C C	améra entrage X-Y CE-BG04-US -090318-006 Parameters Axis [mm] : 0.74 Axis [mm] : -0.4 Axis [mm] : 1.19	Camé Focus BCE-BC 13-1002 5557 897 1512	ra s Z 304-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04-1 13-100224-1 F	x-Ry Joog Parameters ease Camera
	améra entrage X-Y CE-BG04-US Parameters Xaxis [mm] : 0.74 Yaxis [mm] : 0.74	Camé Focus BCE-BC 13-1007 5557 897 9512 36.27232	ara s Z 304-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04- 13-100224- F Rel Rel Acquisition	x-Ry J J J Parameters ease Camera teset Offset
C C C C C C C C C C C C C C C C C C C	améra entrage X-Y SE-BG04-US H090318-006 Perameters CAxis [mm] : 0.74 CAxis [mm] : 0.75 CAXIS [mm] : 0	Camé Focus BCE-BC 13-100 5557 897 1512 36.27232 -228.8848	ara 5 Z 304-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04-1 13-100224-1 F Rel Rel F Acquisition Frame Nur Process D	x-Ry Jogo Parameters ease Camera teset Offset nange : 1
C C C C C C C C C C C C C C C C C C C	améra entrage X-Y E-BG04-US -090318-006 Parameters (Axis [mm] : 0.74 (Axis [mm] : -0.4 (Axis [mm] : 1.19 (rotation [arcsec] : (rotation [arcsec] :	Camé Focus BCE-BC 13-1002 5557 897 5512 36.27232 -228.8848	6778 5 Z 204-U 224-007 Parameters	Caméra Tip-tilt R BCE-BG04-1 13-100224-1 F Rel Rel Acquisition Frame Nur Process D	x-Ry Joo9 Parameters ease Camera teset Offset teset Offset teset Offset teset Offset teset Offset

Démarche à suivre pour la réalisation d'une mesure :

- Lorsque le programme démarre, les trois caméras doivent être branchées.
- Pour démarrer l'acquisition des images appuyez sur "start".
- Pour chaque caméra, allez dans paramètre et réglez le temps d'exposition ainsi que le gain de manière à obtenir une image de bonne qualité.

raramete	rs connyu	rauon
Resolution	752x480	•
Start	0	*
'Start	0	*
xposure Time	40	*
ain	100	
caling	2	

FIGURE 8.6 – Interface Paramètres.

- Lancez le processus en appuyant sur "Refresh Processing", les valeurs pour les cinq degrés de liberté mesurées sont affichées. Lors du démarrage, les valeurs sont automatiquement misent à zéro.
- Pour effectuer une mesure relative, lorsqu'on se trouve en position initiale, le bouton "reset offset" permet de réinitialiser les valeurs.

Chapitre 9 Validation du système

Au cours de ce chapitre, les résultats de mesures obtenus à l'aide du nouveau système de métrologie sont présentés. Ils sont également confrontés aux exigences de l'étalonnage de l'hexapode pour vérifier son application.

Pour valider les résultats obtenus à l'aide des caméras, des instruments de contrôle sont nécessaires. Ces outils de mesure doivent avoir une résolution et une précision égales voir inférieures à celles du système à valider.

Les déplacements axiaux en X et Y sont réalisés par une table croisée qui permet le centrage de la mire. Cette table croisée est équipée de deux verniers possédant une résolution de 0.01 mm. Les verniers permettent donc seulement une approche de la valeur mais pas un positionnement suffisamment précis pour contrôler les mesures.

Un palpeur monté sur un pied magnétique est utilisé pour mesurer les déplacements axiaux. Il fonctionne par balayage photoélectrique d'une règle optique avec une résolution d'un micron.

Il est important de fixer le palpeur le plus près possible du point de mesure avec un bras de levier le plus court possible afin de limiter les erreurs de mesures.

L'inclinomètre fonctionne grâce à un système capacitif à pendule. Sa précision est de 0.02 mm/m qui correspond à 20 µrad soit 5 arcsec. Aucun système de mesure de l'inclinaison du plan n'a été intégré dans la structure, cependant la surface de la plaque simulant le miroir a été conçue suffisamment grande afin de pouvoir y poser un inclinomètre dans chaque axe.

9.1 Position initiale du système

Une position initiale doit être définie pour le système de remplacement de l'hexapode. Cette référence correspondrait à une consigne identique donnée aux six actionneurs de l'hexapode.

Définir un point de référence permet de réaliser plusieurs séries de mesures, échelonnées dans le temps, dans une position identique.

Les références suivantes ont été définies de manière à être au centre des plages de mesure des différents appareils utilisés.

Degré de	Position	Outil de	Béférence
LIBERTÉ	INITIALE	MESURE	Iterentee
Centrage en X	18 [mm]	Vernier	"0" du vernier
Centrage en Y	$5 \; [\mathrm{mm}]$	Vernier	"0" du vernier
Focus (Z)	$2 \ [mm]$	Palpeur	Équerre en appui sur le disque
Rotation Rx	Horizontale	Inclinomètre	Base de l'équerre
Rotation Ry	Horizontale	Inclinomètre	Base de l'équerre

TABLE 9.1 – Définition de la position initiale du système.

FIGURE 9.1 - Système prêt pour une mesure.

9.2 Mesure du centrage

Le centrage est mesuré par la caméra verticale.

N'ayant pas le filtre à disposition à cause d'un problème de livraison, les mesures ont été faites avec comme seule lumière celle des LED du montage afin d'éviter les perturbations.

Conditions des mesures :

Exposure Time	30 [ms]
Gain	100
Avec/sans Filtre	Sans
Taille de l'image	$11 \ge 16$ [symbole]

Le système de mesure est mis à zéro dans sa position initiale. Pour la première série de mesures, les valeurs sont relevées en allant de -1.6 mm à +1.6 mm par pas de 0.2 mm contrairement aux séries 2 et 3 qui ont été incrémentées de sens contraire.

FIGURE 9.2 – Résultats des mesures du centrage.

CHAPITRE 9. VALIDATION DU SYSTÈME

Les deux premières séries ont été réalisées à la même position alors que la mire a été décalée de -0.5 mm pour la troisième série de mesures.

En soustrayant la valeur réelle du déplacement à celle mesurée, la caractéristique de l'erreur est tracée :

FIGURE 9.3 – Erreur sur les mesures du centrage.

Une erreur systématique apparaît de type sinusoïdale. Pour approximer cette erreur, la méthode des moindres carrés est utilisée. L'erreur obtenue peut être approchée par une série de Fourier du premier ordre. Le programme Matlab permet de déterminer les coefficients pour que le modèle mathématique corresponde le maximum aux valeurs mesurées.

La série de Fourier du premier ordre s'écrit :

$$f_{(x)} = a_0 + a_1 \cdot \cos(x \cdot \omega) + b_1 \cdot \sin(x \cdot \omega) \tag{9.2.1}$$

AXE	Série	A_0	A_1	B_1	$\omega \ [rad/mm]$
	1	26.3	-28.4	21.5	3.04
X	2	22.9	-28.6	21.5	3.00
	3	-15.0	21.9	25.3	3.10
	1	42.0	-46.0	-28.3	3.24
Y	2	28.2	-26.7	46.2	3.22
	3	-11.4	6.9	54.2	3.22

Résultats des coefficients calculés pour chaque série :

TABLE 9.2 – Coefficients pour l'approximation par série de Fourier pour le centrage.

La pulsation oméga permet de déterminer la fréquence et donc la période du signal de l'erreur :

$$\omega = 2 \cdot \pi \cdot f \qquad \rightarrow \qquad f = \frac{\omega}{2 \cdot \pi} \qquad \left[\frac{1}{mm}\right]$$
(9.2.2)

$$T = \frac{1}{f} \qquad [mm] \tag{9.2.3}$$

En utilisant la valeur moyenne des trois pulsations calculées :

• Période du signal de l'erreur en X :

$$\overline{\omega} = 3.05 \qquad \left[\frac{rad}{mm}\right]$$
$$f = \frac{3.03}{2 \cdot \pi} = 0.48 \qquad \left[\frac{1}{mm}\right]$$
$$T = \frac{1}{0.48} = 2.06 \qquad [mm]$$

• Période du signal de l'erreur en Y :

$$\overline{\omega} = 3.23 \qquad \left[\frac{rad}{mm}\right]$$
$$f = \frac{3.23}{2 \cdot \pi} = 0.51 \qquad \left[\frac{1}{mm}\right]$$
$$T = \frac{1}{0.48} = 1.95 \qquad [mm]$$

La valeur d'environ deux millimètres obtenue pour la période doit être en lien avec le pas de la mire qui est de deux millimètres (voir chapitre 3.2). Pour la troisième série de mesures qui est décalée de cinq dixièmes, toute la sinusoïdale est translatée de la même valeur. L'erreur est donc propre à la lecture et au traitement de l'image. Sans correction la précision des mesures correspond à l'amplitude de la courbe, soit $\pm 40 \ \mu m$ pour le centrage en X et $\pm 50 \ \mu m$ pour le centrage en Y.

En connaissant les paramètres de la sinusoïdale, chaque mesure peut être corrigée en lui soustrayant l'erreur systématique :

FIGURE 9.4 – Erreur après correction sur les mesures du centrage.

La nouvelle caractéristique de l'erreur corrigée est toujours de forme sinusoïdale mais d'amplitude beaucoup plus faible. La période est légèrement inférieure à deux millimètres. Certainement que cette erreur est toujours provoquée par la géométrie de la mire et pourrait encore être corrigée dans l'algorithme du programme.

La précision du centrage est maintenant de $\pm 8~\mu{\rm m}$ pour le centrage en X et $\pm 6~\mu{\rm m}$ pour le centrage en Y.

Pour définir la répétabilité du système de mesures, le même déplacement est mesuré quarante fois consécutivement. Entre chaque mesure la position est déréglée puis reréglé. L'histogramme ci-dessous est ensuite tracé en représentant les écarts de mesures :

FIGURE 9.5 – Histogramme de l'erreur du centrage.

L'écart-type corrigé est obtenu par l'équation ci-dessous :

$$\sigma_c = \sqrt{\frac{\sum \left[x_i - \overline{x}\right]^2}{n - 1}} \tag{9.2.4}$$

Sachant que le 99.7% des mesures se trouvent dans l'intervalle $[\overline{x} - 3\sigma; \overline{x} + 3\sigma]$, l'incertitude peut alors être estimée en multipliant l'écart-type par un facteur de 3 afin d'avoir un bon niveau de confiance.

\mathbf{D}	-1 -	174 + +	+ :		1 .	12:		1	A	
Resume	ae	recart-type	estime	егс	1e -	Eincertitude	DOIII.	le cer	itrage	•
recounte	ao	recard type	counto	00 0	1 0 .	moorenead	pour	10 001	101060	•

Centrage	Écart-type	Incertitude
X	$2.0 \; [\mu m]$	$\pm 6.0 \ [\mu m]$
Y	$1.6 \; [\mu m]$	$\pm 4.8 \; [\mu m]$

TABLE 9.3 – Écart-type du centrage.

L'incertitude calculée à l'aide du coefficient de confiance correspond bien à l'amplitude maximum de l'erreur corrigée sur la courbe 9.4.

53

9.2.1 Résolution du centrage

Le test de résolution du centrage est réalisé en mesurant une série de pas d'amplitude décroissante et en observant le résultat mesuré. Avant chaque nouvelle mesure, les positions sont réinitialisées.

FIGURE 9.6 – Résolution des mesures de centrage.

Des pas de 3 μm peuvent être mesurés avec une erreur inférieure au micron pour le centrage en X et Y.

9.3 Focus

Le focus est mesuré par la caméra horizontale. Cette caméra pourrait également mesurer le centrage en Y, mais cette utilisation serait redondante étant donné que la caméra verticale réalise déjà cette mesure.

Les mesures sont également réalisées avec comme seule lumière celle des lampes LED.

Conditions des mesures :

Exposure Time	40 [ms]
Gain	100
Avec/sans Filtre	Sans
Taille de l'image	$12 \ge 18$ [symbole]

FIGURE 9.7 – Résultats des mesures du focus.

CHAPITRE 9. VALIDATION DU SYSTÈME

Les deux premières séries ont été réalisées à la même position alors que la mire a été décalée de -0.5 mm pour la troisième série de mesures.

En soustrayant la valeur réelle du déplacement à celle mesurée, la caractéristique de l'erreur est tracée.

FIGURE 9.8 – Erreur sur les mesures du focus.

Pour les trois séries de mesures, l'erreur principale est à nouveau de type sinusoïdale. La source de cette erreur est certainement identique à celle des mesures du centrage. Cependant, cette sinusoïdale est additionnée à une droite pour la série 1 et 2. La droite doit être une erreur provoquée par la géométrie du système. Une mauvaise perpendicularité entre le plan et la caméra peut en être la cause.

Il faut encore remarquer que les courbes ne passent pas par zéro. Un offset positif certainement provoqué par un jeu influence les mesures. Ce décalage peut venir d'une flexion du bras de fixation du palpeur ou alors de l'articulation de celui-ci.

La courbe obtenue de manière expérimentale peut être approximée par une équation de type :

$$f_{(x)} = a_0 + a_1 \cdot \cos(x \cdot \omega) + b_1 \cdot \sin(x \cdot \omega) + c \cdot x$$

La méthode des moindres carrés permet de déterminer la valeur des coefficients. Résultats obtenus à l'aide de Matlab :

AXE	Série	A_0	A_1	B_1	С	$\omega \ [rad/mm]$
	1	14.2	15.33	-12.2	-7.8	3.64
Z	2	14.3	-7.5	-16.4	48.4	3.52
	3	47.3	-5.6	-26.9	-	2.69

TABLE 9.4 – Coefficients pour l'approximation du focus par séries de Fourier.

En connaissant les paramètres des courbes de régression et les équations 9.2.2 et 9.2.3, la période de chaque courbe est déterminée :

• Période des courbes 1 et 2 :

$$\overline{\omega} = 3.58 \qquad \left[\frac{rad}{mm}\right]$$
$$f = \frac{3.58}{2 \cdot \pi} = 0.57 \qquad \left[\frac{1}{mm}\right]$$
$$T = \frac{1}{0.57} = 1.75 \qquad [mm]$$

• Période de la courbe 3 :

$$\overline{\omega} = 2.69 \qquad \left[\frac{rad}{mm}\right]$$
$$f = \frac{2.69}{2 \cdot \pi} = 0.43 \qquad \left[\frac{1}{mm}\right]$$
$$T = \frac{1}{0.43} = 2.33 \qquad [mm]$$

Bien que moins précis que pour le centrage, la période calculée reste proche de la valeur du pas de la mire. La différence est certainement provoquée par la droite qui influence l'approximation.

En connaissant les paramètres de la courbe de régression, chaque mesure peut être corrigée en lui soustrayant l'erreur systématique :

FIGURE 9.9 – Erreur après correction des mesures du focus.

La nouvelle caractéristique obtenue est encore de type sinusoïdale, mais les erreurs de dispersion sont importantes. L'amplitude maximale du signal permet de définir la précision du focus. Elle est de ± 5 µm.

La répétabilité du système de mesure est ensuite vérifié à l'aide d'une série de quarante mesures. L'histogramme ci-dessous est tracé en représentant les écarts de mesures :

FIGURE 9.10 – Histogramme de l'erreur du focus.

A l'aide de l'équation de l'écart-type estimé (9.2.4) et avec une plage d'incertitude de $[\overline{x} - 3\sigma; \overline{x} + 3\sigma]$ les valeurs suivantes sont calculées pour le système de mesure du focus :

	Écart-type	Incertitude
Focus	$2.1 \; [\mu m]$	$\pm 6.2 \; [\mu m]$

TABLE 9.5 – Écart-type du focus.

L'incertitude calculée à l'aide du coefficient de confiance correspond bien à l'amplitude maximum de l'erreur corrigée sur la courbe 9.9.
9.3.1 Résolution du Focus

Le test de résolution du focus est le même que celui réalisé sur le centrage. Une série de pas d'amplitude décroissante est réalisée et le déplacement est mesuré par la caméra. Les positions sont réinitialisées pour chaque nouveau pas.

FIGURE 9.11 – Résolution de la mesure du focus.

La résolution du focus est similaire à la résolution du centrage. Un pas de 3 μm peut être mesuré.

9.4 Tip-tilt

La caméra pour la mesure des tip-tilts est la caméra à 45°. Lors de la mesure des tip-tilts, le soft réalise la transformation entre la valeur linéaire mesurée et l'angle de l'inclinaison à l'aide du calcul des tip-tilts (voir chapitre 6.6.1).

FIGURE 9.12 – Précision des mesures des tip-tilts

En connaissant la valeur de l'incertitude sur la mesure de distance linéaire, l'incertitude sur l'angle peut être calculée :

$$\Delta f_{(x)} = \left| \frac{df_{(x)}}{dx} \right| \cdot \Delta x$$

De l'équation 6.6.1 :

$$\Delta\beta = -0.5\cdot\frac{x}{d^2+x^2}\cdot\Delta x$$

En soustrayant la valeur réelle du déplacement à celle mesurée, la caractéristique de l'erreur est tracée.

FIGURE 9.13 – Erreur sur les mesures des tip-tilts

La plage de mesure parcourue lorsqu'une inclinaison de ± 300 arcsec est effectuée correspond à environ ± 0.5 mm. Il est donc plus difficile de discerner l'erreur de type sinusoïdale causée par la géométrie de la mire.

En approximant par une série de Fourier du premier ordre (voir équation 9.2.1), les coefficients suivants sont déterminés :

TIP-TILT	A_0	A_1	B_1	$\omega [rad/mm]$
$\mathbf{R}\mathbf{x}$	36.6	-39.0	-34.7	0.0056
Ry	23.0	-23.2	3.6	0.0057

TABLE 9.6 – Coefficients pour l'approximation par séries de Fourier pour les tip-tilts.

La différence de la pulsation entre les deux courbes est quasi-nulle. Calcul de la période à l'aide des équations 9.2.2 et 9.2.3 :

• Période de la courbe Rx :

$$\overline{\omega} = 0.0056 \qquad \left[\frac{rad}{arsec}\right]$$

$$f = \frac{0.0056}{2 \cdot \pi} = 0.0009 \qquad \left[\frac{1}{arcsec}\right]$$

$$T = \frac{1}{0.0009} = 1122 \qquad [arcsec] = 0.0054 \qquad [rad]$$

En exprimant X par rapport à β dans l'équation 6.6.1,

$$X = d \cdot tan(2 \cdot \beta)$$

La période peut alors se calculer en [mm] :

$$T = 195 \cdot tan(2 \cdot 0.0054) = 2.12 \quad [mm]$$

Le calcul de la période pour la courbe de Ry est identique à celui de Rx. La période pour cette deuxième approximation est de 2.08 mm.

L'erreur est donc toujours bien de type systématique et causé par la géométrie de la mire.

FIGURE 9.14 – Erreur après correction des mesures des tip-tilts.

L'amplitude maximale du signal permet de définir la précision des mesures des tip-tilts. Elle est de ± 5 arcsec pour la mesure de Rx et de ± 4 arcsec pour la mesure de Ry.

La répétabilité des mesures de tip-tilts sont ensuite vérifiées à l'aide d'une série de quarante mesures. L'histogramme ci-dessous est tracé en représentant les écarts de mesures :

FIGURE 9.15 – Histogramme de l'erreur des tip-tilts

A l'aide de l'équation de l'écart-type estimé (9.2.4) et avec une plage d'incertitude de $[\overline{x} - 3\sigma; \overline{x} + 3\sigma]$ les valeurs suivantes sont calculées pour le système de mesure des tip-tilts :

Tip-tilt	Écart-type	Incertitude
Rx	1.7 [arcsec]	$\pm 5.1 \ [arcsec]$
Ry	$2.0 \ [arcsec]$	$\pm 6 \ [arcsec]$

TABLE 9.7 – Écart-type des tip-tilts.

L'incertitude calculée à l'aide du coefficient de confiance correspond à l'amplitude de l'erreur corrigée (voir graphique 9.14.

9.4.1 Résolution des Tip-tilts

Le test de résolution des Tip-tilts est le même que ceux réalisés précédemment. L'amplitude des pas est différente mais elle reste décroissante afin d'observer les limites du système.

FIGURE 9.16 – Résolution de la mesure des tip-tilts.

La résolution obtenue des tip-tilts est de l'ordre de 5 arcsec.

VALEUR RECHERCHÉE Déplacement CARACTÉRISTIQUE Résultat obtenu Plage de mesure $\pm 1.5 mm$ $\pm 1.5 mm$ Focus Résolution $\leq 0.6 \ \mu {\rm m}$ $3 \ \mu m$ Précision $\leq 3~\mu{\rm m}$ $6 \ \mu m$ Plage de mesure $\pm 0.7 \ mm$ $\pm 0.7\ mm$ Centrage Résolution $\leq 5 \ \mu m$ $3 \ \mu m$ Précision $\leq 10 \ \mu m$ $8 \ \mu m$ Plage de mesure $\pm 300 \ arcsec$ $\pm 300 \ arcsec$ **Tip-tilts** Résolution $\leq 5 \ arcsec$ 5 arcsec Précision 6 arcsec $\leq 10~arcsec$

9.5 Comparaison entre les résultats obtenus et les valeurs recherchées

TABLE 9.8 - Confrontation des résultats.

Chapitre 10 Evolutions futures

Ce premier prototype a permis de réaliser une première itération de tous les paramètres influençant la mesure de position. Beaucoup d'améliorations sont possibles est doivent être réalisées afin de fournir une solution définitive et fiable.

La plupart de ces améliorations sont réalisables sans changement sur le banc de test.

10.1 Optimalisation du logiciel

La première amélioration qui parait être une priorité est l'optimisation du soft. La version actuelle du programme est restée au stade de prototype. Il serait possible d'améliorer les performances et de diminuer la charge du processeur en restructurant la partie du code en C#. Cette modification permettrait d'ajouter beaucoup d'options qui actuellement ralentissent trop le système.

10.1.1 Interface plus complet

Actuellement les caméras sont définies en fonction des ports USB sur lesquels elles sont branchées. Il serait pratique de pouvoir définir quelle caméra mesure quel déplacement dans un menu déroulant de l'interface graphique.

10.2 Correction de l'erreur systématique

La première amélioration à réaliser serait la correction de l'erreur systématique obtenue sur tous les résultats. En corrigeant cette erreur, les mesures atteindraient la précision recherchée et nécessaire pour l'étalonnage de l'hexapode.

Cette erreur peut se corriger en modifiant l'algorithme du calcul de la position fine. Une autre possibilité serait de corriger l'erreur en soustrayant la sinusoïdale, en s'adaptant à la position de l'image.

Une fois cette amélioration effectuée, la précision obtenue sera de l'ordre de 5 μm et permettra l'étalonnage de l'hexapode.

10.3 Gravage de nouvelles mires

Graver des mires microscopiques sur du papier n'améliore pas les résultats de mesures. La qualité du résultat dépend de la taille des pixels. Cependant, si les mêmes mires avec un pas plus petit pouvaient être gravées sur du verre avec une résolution élevée, les résultats seraient considérablement améliorés.

10.4 Cross coupling

Les liens entre les différents degrés de liberté ont été établis, mais l'implémentation de ces équations dans le soft n'a pas été faite. En réalisant ces corrections dans le programme, chaque mesure serait isolée des influences de tous les autres déplacements.

10.5 Lecture de la rotation en Z

La mesure du sixième degré n'est pas réalisée actuellement alors que tous les éléments sont disponibles. En utilisant la deuxième mesure de Y donné par la caméra horizontale, il serait possible de déterminer la rotation autour de Z.

Cette mesure servirait plus à titre informatif, mais permettrait de vérifier un bon alignement du système par exemple.

Chapitre 11 Conclusion

Les résultats obtenus au terme de ce travail sont encourageants. Après correction de l'erreur systématique qui dégradait la qualité des mesures, la précision du système s'approche des exigences nécessaires à l'étalonnage de l'hexapode.

Beaucoup d'améliorations doivent encore être apportées au dispositif de mesures afin de fournir la solution la plus fiable à l'ESO¹. Mais ce premier prototype permet de confirmer la faisabilité et met en évidence les éléments qui devront impérativement évoluer.

Dans un avenir proche, cette nouvelle méthode de métrologie pourrait bien s'étendre à de multiples applications industrielles. Réaliser des mesures, sans contact, avec une résolution de l'ordre du micron est très intéressant. Cette méthode a un deuxième avantage, elle nécessite comme seul matériel une caméra USB et une mire imprimée sur un support. Le coût de ce nouvel outil de métrologie défierait toute concurrence étant donnée la simplicité du système. Il pourrait s'utiliser à grande échelle et dans des milieux ou le risque d'installer un système à plusieurs dizaines millier de francs ne peut pas être pris.

Yverdon-les-Bains, le 12 août 2011

Sébastien Dubath

^{1.} European Southern Observatory

Bibliographie

Ouvrages de référence

- Fabien Chevalley *Programmation d'une caméra intelligente pour la mesure de position* Travail de Bachelor (2009)
- [2] Hexapode Design Report Auxiliary Telescope Systeme, M2 support, Design Report
 CSEM Technical Report No. 849, Doc. no. : VLT-TRE-CSE-151122-001 (septembre 1999)
- [3] Hexapode Test Report Auxiliary Telescope Systeme, M2 support, Test Report
 CSEM Technical Report, Doc. no. : VLT-TRE-CSE-151122-17 (fevrier 2005)

Supports de cours

- [4] Alexander Knob Introduction à Visual CSharp Version 1.4 (01.2011)
- [5] Lorenzo Zago
 Bases de Métrologie
 Cours de Métrologie (MTR) Orientation MI
- [6] Lorenzo Zago
 Bases d'optique
 Cours d'optique (OTI) Orientation MI
- [7] Lorenzo Zago et André Perrenoud Systèmes optiques pour l'imagerie
 Cours d'optique (OTI) - Orientation MI

Sites internet

- [8] Encyclopédie Wikipedia http://www.wikipedia.org/
- [9] Le site du Zéro http://www.siteduzero.com/

Annexe A

Matériel optique

A.1 Caméra

Buffered USB2.0 Monochrome 752x480 CMOS Cameras (8-bit) (Part Numbers: BCN-BG04-U and BCE-BG04-U) **PRODUCT DESCRIPTION FEATURES** Mightex USB2.0 cameras with frame buffers are optimized for machine-vision applications, and they can be also used for a wide variety of applications (such as industrial inspections, digital mi-Built-in frame buffer (23 frames at full resolution) True Global Shutter croscopy and medical imaging) which require good quality cameras that are easy to use and costeffective. These cameras have built-in frame buffers, external trigger-in, strobe-out, and a powerful camera engine that supports multiple cameras. Monochrome cameras often exhibit 20% higher spatial resolution than their color counterparts because no pixel interpolation is necessary. Since Support simultaneous im-age capturing from multiple cameras there is no Bayer color filter on the sensor, monochrome cameras are more sensitive than color sensors, especially in near IR and UV regions. Frame rate can be as high as 60 fps in full resolu-• 4-pin GPIOs tion and up to 600 fps using ROI mode. A user-friendly GUI based application software and an SDK Higher sensitivity than color cameras especially in IR are provided for custom software development. In addition, a DirectShow driver and a TWAIN driver are available to easily link the cameras with users' applications. A USB command set protocol and • 752x480 active imaging a Linux driver are also provided for non-Windows based applications. pixel High-speed USB2.0 (480Mb/s) **PERFORMANCE SPECIFICATIONS** BCN-BG04-U BCE-BG04-U Parameters Unit frame grabber • Full-featured SDK Board-level/enclosed Board-level Enclosed Number of GPIOs 4 4 Resolution 752x480 Monochrome USB command set protocol for non-Windows based applications CMOS Chip 1/3" Micron MT9V032, global shutter (Micron TrueSNAP) Pixel Size 6 0x6 0 mm Scanning System Progressive Dynamic Range >55 dB Grav Level 8 bit Responsivity 4.8 V/lux-sec supply OEM versions available On-board Memory 32 MB ("Frame Buffers" APPLICATIONS 60 @752x480 65 @640x480 Frame Rates* 130 @320x240 fps (@26MHz Clock) Digital microscopy Medical imaging 220 @160x120 310 @64 x 64 Sub Resolutions Support arbitrary ROI (Nx, Ny), with Nx and Ny multiples of 4 Shutter Speed 0.05 ~ 750 ms (Exposure time Hardware Gains 1x ~ 4x Web camera and security video Trigger Mode With external trigger** Strobe Out Yes C- mount or CS-mount Lens mount (M12.5-mount or custom-defined lens mount supported) Built-in Filters IR-cut 9factory standard), or IR-pass, or no filter

The actual achievable frame rate depends on exposure time, as well as resources of PC system
 ** Part number of the trigger cable for external trigger : ACC-CAM-DIN8

51 x 51 x 29 (CS-mount)

51 x 51 x 34 (C-mount)

80

< 1.8

Mightex Systems, 2343 Brimley Road, Suite 868, Toronto, Ontario M1S 3L6, Canada Tei: 1-116-840-4991 or 1-925-218-1885, Fax: 1-416-840-6541, Email: sales@mightex.com www.miothex.com or www.miothexsystems.com

Power consumption

Weight (excluding

Dimension

lens)

58 x 58 x 34 (CS-mount)

58 x 58 x 39 (C-mount)

150

w

mm

g

Objectif MLH-10x A.2

computar

MLH-10X

10X for 1/2 type Cameras, Macro Zoom C-Mount

Model No.	Model No.			Effective	Front	Ø 30 mm			
Max. Magnification		0.084mm - 0.84mm		Lens Aperture	Rear	Ø6.6mm			
Max. Aperture Ratio		1:5.6		Back Focal Length	h	23.29mm			
Max. Image Format		6.4mm x 4.8mm	(Ø8mm)	Flange Back Leng	jth	17.526mm			
Operation Range	Iris	F5.6 - F32C		Mount		C-Mount			
	Focus	0.15m - 0.45m		Filter Size		M46 P=0.75mm	M46 P=0.75mm		
				Dimensions		Ø48mm x 98.5mm			
Control	Iris	Manual		Weight		260g			
	Focus	Manual							
	Zoom	Manual							
Object Size(1/2 type CCD)		Working	152.4mm(6")	92.2mm - 9.6mm(I	D) 74.6mm - 7	7.8mm(H) 56.4r	mm - 5.9mm(V)		
		Distance	457.2mm(18")	349.4mm - 34.6mr	m(D) 279.2mm -	28.0mm(H) 208.8	3mm - 21.2mm(V)		
Object Size(1/3 ty	/pe CCD)	Working	152.4mm(6")	70.1mm - 7.3mm(D) 56.4mm - 5.9mm(H) 42.4mm - 4.4mm			mm - 4.4mm(V)		
		Distance	457.2mm(18")	261.6mm - 26.4mr	m(D) 208.8mm -	21.2mm(H) 156.2	2mm - 16.0mm(V)		
Object Size(1/4 ty	/pe CCD)	Working	152.4mm(6")	53.0mm - 5.6mm(D) 42.4mm - 4.4mm(H) 31.8mm - 3.4mm(V)					
		Distance	457.2mm(18")	208.8mm - 21.2mr	m(D) 156.2mm -	16.0mm(H) 117.0	6.0mm(H) 117.0mm - 12.0mm(V)		
Angle of View	D	1/2 type	21.6° - 4.5°	1/3 type	17.0° - 3.3°	1/4 type	13.0° - 2.5°		
	Н]	18.0° - 3.6°]	13.8° - 2.7°]	10.6° - 2.0°		
	V	1	13.8° - 2.7°	1	10.6° - 2.0°	1	8.0° - 1.5°		
Operating Temperature		-20°C - +50°C							

* For CS-Mount camera, please use 5mm adapter ring. M.O.D. : Minimum Object Distance

Dimensions

Specifications subjected to change without any notice.

A.3 Objectif M3520

computar

<u>M3520-MPV</u>

f=35mm F2.0 for 2/3 type Cameras, 3 Megapixel C-Mount

Model No.		M3520-MPV		Effective	Front	φ18.0mm		
Focal Length	Focal Length			Lens Aperture	Rear	φ12.0mm		
Max. Aperture Ratio		1:2.0		Distortion	2/3 type	0.011%(y=5.5)		
Max. Image Format		8.8mm x 6.6mm	(¢11mm)		1/1.8 type	0.010%(y=4.32)		
Operation Range	Iris	F2.0 - F22.0		-	1/2 type	0.009%(y=4.0)		
	Focus	0.2m - Inf.		Back Focal Length		18.0mm		
Control	Iris	Manual		Flange Back Length		17.526mm		
	Focus	Manual		Mount		C-Mount		
	2/3 Type	3.48cm x 4.63cm	n	Filter Size		M27.0 P=0.5mm		
Object Dimension at M.O.D.	1/1.8 Type	2.74cm x 3.63cm	n	Dimensions		¢ 29mm x 37.34mm		
	1/2 Type	2.53cm x 3.37cm		Weight		59.0g		
Angle of View	D	2/3 type	17.8°	1/1.8 tyoe	14.0°	1/2 type	13.0°	
	н		14.3°		11.2°		10.4°	
	V		10.7°	-	8.5°		7.8°	
Operating Temperat	ture	−10°C - +50°C	-	<u> </u>		-	•	

M.O.D. : Minimum Object Distance

Dimensions

Specification is subject to change without any notice.

2009.06

heig-vd Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

ANNEXE A. MATÉRIEL OPTIQUE

A.4 Miroir

Annexe B

Conception mécanique

B.1 Matériels commandés

Pièces	NUM. D'ARTICLE	Fournisseur	Qte	Repère
Goujon d'arrêt	0708 45308 B	Ramseier	1	19
Écrous de serrage	KM8	SKF	2	8

Matériels commandés

TABLE B.1 – Liste des pièces commandées.

Ramseier

Normteile für den Werkzeugbau

Arretierbolzen Type A ohne Rastnut ohne Konterm sans arrêt sans écrou 02 Туре А Туре В Goujons d'arrêt Type B ohne Rastnut mit Kontermutte sans arrêt avec écrou Type C mit Rastnut ohne Konte avec arrêt sans écrou Type D mit Rastnut mit Kontermu avec arrêt avec écrou Type C Туре D Werkstoff: Vergütungsstahl, brüniert oder Nirosta Pilzgriff, Thermoplast Matière: Acier traité, bruni ou inox Gr. D -0,02 -0,04 Poignée en plastique Artikelnummer No d'article D₁ ca. ca. N N A+B C+D Type A Type B Type C Type D 070845105 A ...105 B ...105 C ...105 D 1 5 M10x1 21 50 17 7 10 15 5 13 17 5 12 Bestellbeispiel: Exemple de commande: 0708 45206 A ...206 B ...206 C ...206 D 2 6 M12×1,5 25 59 20 8 11 17 6 14 19 6 14 0708 45308 A ...308 B ...308 C ...308 D 3 8 M16x1,5 33 77 26 10 13 23 8 19 24 15 35 0708 45105 A = Stahl/Acier Rost 0708 45410 A ...410 B ...410 C ...410 D 4 10 M20x1,5 33 83 28 12 15 25 10 22 30 20 40 0708 45105 AN = Nirosta/Inox

-D--

Ringklammer mit Kugelkette

whet offe

Chaine de retenue

00000000000000000000000000000000000000

Werkstoff: Ringklammer, Federstahl	Artikelnummer No d'article	L = Kettenlänge L = Longueur de chaine			D	D ₁	
Kugeikette, Messing	0708 51201	150	300	500	8,5	0,9	
Matière:	0708 51202	150	300	500	11,5	1,2	
Anneau acier à ressort	0708 51203	150	300	500	14,5	1,6	
Chaine laiton	0708 51204	150	300	500	17,5	1,6	
onano, ratori	0708 51205	150	300	500	20,5	2,0	
Bestellbeispiel:	0708 51206	150	300	500	23,5	2,0	
Exemple de commande:	0708 51207	150	300	500	29,5	2,6	
0708 51201 150	0708 51208	150	300	500	35,5	2,6	
0708 51201 150	0708 51208	150	300	500	35,5		

07.08 Ramseier Werkzeugnormalien AG Dübendorfstr. 27 CH-8602 Wangen Tel. 01 834 01 01 Fax 01 834 02 00

B.2 Pièces usinées

Pièces	Matière	Qte	Repère	Masse [kg]
Partie pivotante				
Plateau tournant	Aluminium, rectifié	1	5	9.1
Axe	Laiton	1	6	0.9
Rondelle	Laiton	1	7	0.06
Équerre de base				
Plaque de base	Acier	1	1	11.2
Montant vertical	Acier	1	2	12.1
Renfort	Acier	2	3	7.2
Plaque anti-frottement	POM (matière synthétique)	1	4	0.3
Simulation hexapode				
Équerre de fixation	Aluminium	1	9	0.6
Rondelle adaptation 1	Aluminium	1	11	0.08
Rondelle adaptation 2	Aluminium	1	12	0.08
Rondelle adaptation 3	Aluminium	1	13	0.08
Plaque adaptation	Aluminium	1	14	0.06
Fixation des mires				
Support mire 45°	Aluminium	1	23	0.2
Support mire horizontale	Aluminium	1	20	0.4
Support mire verticale	Aluminium	1	21	0.13

TABLE B.2 – Liste des pièces usinées.

			0					0		α	⊳	_
2								Δ	Ā			2
		Lont, normes Bon pour exéc.	Contrôlé	Dessiné Dubath. S	Tol. gén de soudure ISO 13920- Pression d'essai Nom Signature	Prieces mourees ISU dubz-Li Symboles de soudure Procédé de soudage	Tolérances générales ISD 2768-	Ø 60	€ 40.5 ▼			w
Masse:	CuZnPb3			14.06.2011	Date		n: Rayons non colé					t
Echelle:1:1	Nom du fichier (Dessin) Rondelle_(aiton		Rond		Haute Eccle Spécialisée H de Suisse occidentale d	Hes-so t	57 77				0.5 x 45°	5
Feuille 1 de 1	A4		D D		laute Ecole d'Ingénierie et de Gestion / 1111V/ lu Canton de Vaud	Teig-Vd (TINI)	Revision	0		σ	Þ	6

												▶			
															_
2															2
		Bon pour exér.	Contrôlé Font normes	Dessiné Dubath S.	Pression d'essai Nom Signature	Symboles de soudare Procédé de soudage Tol.gén de soudare ISO 13920-	Tolérances générales ISO 2768- Pièces moulées ISO 8062-CT	10 60	2	00				M6 (2x)	З
Masse:	Aluminium			02.08.2011	Date		1: Chanfreiné	5]		100		12	+
Echelle:1:2 Feuil	Nom du fichier (Dessin) Support_mire_45	Nom du fichier (Dessin) Support_mire_45		Dénomination: Support min			27								J
jille 1 de 1	A4	nire 45°			nton de Vaud	1 BCole d'ingénierie et de Gestion (TIN)	Revision:				α.				6

